Powers of elements of the series substitution group \(\mathcal J(\mathbb Z_2)\).
From MaRDI portal
Publication:5963955
DOI10.1016/j.topol.2015.12.025zbMath1341.20026OpenAlexW2227670549MaRDI QIDQ5963955
Semeon A. Bogatyi, D. D. Kiselev, S. I. Bogataya
Publication date: 26 February 2016
Published in: Topology and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.topol.2015.12.025
Nottingham groupcharacteristic 2depth sequencesexplicit embeddingsgroups of formal power seriesJennings group
Subgroup theorems; subgroup growth (20E07) Derived series, central series, and generalizations for groups (20F14) Limits, profinite groups (20E18)
Related Items (5)
Automata and finite order elements in the Nottingham group ⋮ Minimalp-extensions and the embedding problem ⋮ The loop of formal power series with noncommutative coefficients under substitution ⋮ Algebra, geometry, and topology of the substitution group of formal power series ⋮ Commutants of the multidimensional Jennings group
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Local indices of iterations of a holomorphic map
- A remark on the Lefschetz fixed point formula for differentiable maps
- An algebraic formula for the degree of a \(C^\infty\) map germ. Sur une inegalite a la Minkowski pour les multiplicites
- Subgroups of the Nottingham group
- Automorphisms of the Nottingham group
- Formal complex multiplication in local fields
- Über die Vielfachheit einer holomorphen Abbildung
- On automorphisms of local fields
- Ein Satz über den Leray-Schauderschen Abbildungsgrad. (Theorem on the Leray-Schauder degree of mappings)
- The exponent of certain finite p-groups
- Some Results on Analytic Iteration and Conjugacy
- THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING
- Algebra, geometry, and topology of the substitution group of formal power series
- Substitution Groups of Formal Power Series
This page was built for publication: Powers of elements of the series substitution group \(\mathcal J(\mathbb Z_2)\).