Rough fractional integrals and its commutators on variable Morrey spaces
DOI10.1016/j.crma.2015.09.024zbMath1342.42016OpenAlexW1897298645MaRDI QIDQ5965094
Publication date: 2 March 2016
Published in: Comptes Rendus. Mathématique. Académie des Sciences, Paris (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.crma.2015.09.024
commutatorsfractional maximal operatorrough fractional integralsvariable Lebesgue spacesvariable Morrey spaces
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Function spaces arising in harmonic analysis (42B35)
Related Items
Cites Work
- Hardy spaces with variable exponents and generalized Campanato spaces
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Fractional integrals on variable Hardy-Morrey spaces
- Commutators of fractional integrals on Lebesgue and herz spaces with variable exponent
- Lebesgue and Sobolev spaces with variable exponents
- The fractional maximal operator and fractional integrals on variable \(L^p\) spaces
- Atomic decomposition of Hardy spaces and characterization of \(BMO\) via Banach function spaces
- On the theory of \({\mathcal L}_{p, \lambda}\) spaces
- Boundedness of fractional integral operators with rough kernels on weighted Morrey spaces
- Weighted Norm Inequalities for Fractional Integrals
- The fractional integral operators on Morrey spaces with variable exponent on unbounded domains
- Variable Hardy Spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item