Weak sequential convergence in the dual of a Banach space does not imply norm convergence
From MaRDI portal
Publication:5966794
DOI10.1090/S0002-9904-1975-13691-3zbMath0297.46015MaRDI QIDQ5966794
Publication date: 1975
Published in: Bulletin of the American Mathematical Society (Search for Journal in Brave)
Normed linear spaces and Banach spaces; Banach lattices (46B99) Duality and reflexivity in normed linear and Banach spaces (46B10)
Related Items (5)
On complemented copies of $c_0(\omega _1)$ in $C(K^n)$ spaces ⋮ On the \(\mathbb{K} \)-vector sequential topology on a non-Archimedean valued field ⋮ Factoring operators through \(c_0\) ⋮ Sur les opérateurs linéaires qui transforment la boule unite d'un espace de Banach en une partie latticiellement bornee d'un espace de Banach reticule ⋮ A Banach space containing non-trivial limited sets but no non-trivial bounding sets
Cites Work
- Operator representation theorems
- On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from \(L^{p}(\mu)\) to \(L^{r}(\nu)\)
- Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques
- Some aspects of the theory of Banach spaces
- Recent developments in infinite dimensional holomorphy
- Unbounded Holomorphic Functions on a Banach Space
- Unnamed Item
- Unnamed Item
This page was built for publication: Weak sequential convergence in the dual of a Banach space does not imply norm convergence