Probabilistisch kompakte L-unscharfe Mengen
From MaRDI portal
Publication:598651
DOI10.1007/BF01170258zbMath0413.54004OpenAlexW418099083MaRDI QIDQ598651
Publication date: 1979
Published in: Manuscripta Mathematica (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/154592
compact probabilistic topologiescompactness of L-fuzzy subsetsprobabilistic topological spacesprobabilistic version of Alexander's lemmaTychonov's theorem
Compactness (54D30) Topological spaces and generalizations (closure spaces, etc.) (54A05) Fuzzy topology (54A40)
Related Items
Triangular norms and TNF-sigma-algebras, \({\mathfrak G}\)-fuzzy topologies on algebraic structures, A theory of fuzzy uniformities with applications to the fuzzy real lines, A categorical accommodation of various notions of fuzzy topology, Editorial to the ``Special issue on fuzzy topology, On \(L\)-Tychonoff spaces, A general theory of fuzzy topological spaces, Compact Hausdorff fuzzy topological spaces are topological, Construction of fuzzy sigma-algebras using triangular norms, Compactness notions in fuzzy neighborhood spaces, Unnamed Item, On separation axioms in fuzzy topological spaces, fuzzy neighborhood spaces, and fuzzy uniform spaces, The order aspect of the fuzzy real line, Compact \({\mathcal G}\)-fuzzy topological spaces, Complete fuzzy topological hyperfields and fuzzy multiplication in the fuzzy real lines, One-point quasi-compactifications for fuzzy neighborhood spaces, Point-set lattice-theoretic topology, Mathematics and fuzziness, some personal reflections
Cites Work
- Probabilistic uniformization of fuzzy topologies
- Multiplications on the space of probability distribution functions
- Fuzzy topological spaces and fuzzy compactness
- Initial and final fuzzy topologies and the fuzzy Tychonoff theorem
- Probabilistische Metriken auf der Menge der nicht negativen Verteilungsfunktionen
- The fuzzy Tychonoff theorem
- L-fuzzy sets
- Completely Distributive Complete Lattices
- Fuzzy topological spaces
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item