Tableau methods for analysis and design of linear systems
From MaRDI portal
Publication:599730
DOI10.1016/0005-1098(79)90016-5zbMath0414.93012OpenAlexW1984552326MaRDI QIDQ599730
Publication date: 1979
Published in: Automatica (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0005-1098(79)90016-5
linear systemcontrollability subspacescanonical formsnumerical algorithms(A,B)-invariantminimal inversestransmission zeros
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (3)
A numerically reliable solution for the squaring-down problem in system design ⋮ Hessenberg and Hessenberg/triangular forms in linear system thcory† ⋮ Computation of zeros of linear multivariable systems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Kronecker's canonical form and the QZ algorithm
- Properties and calculation of transmission zeros of linear multivariable systems
- Basis of invariants and canonical forms for linear dynamic systems
- Remark on multiple transmission zeros of a system
- Matrix eigensystem routines. EISPACK guide extension
- Further discussion on the calculation of transmission zeros
- Calculation of transmission zeros using QZ techniques
- Direct computation of canonical forms for linear systems by elementary matrix operations
- The role of transmission zeros in linear multivariable regulators
- Geometric approach to analysis and synthesis of system zeros Part 1. Square systems
- Transmission and system zeros
- Computation of supremal (A,B)-invariant and controllability subspaces
- Invariant Description of Linear, Time-Invariant Controllable Systems
- An Algorithm for Generalized Matrix Eigenvalue Problems
- Structural Invariants of Linear Multivariable Systems
- An efficient algorithm for calculation of the Luenberger canonical form
- The singular pencil of a linear dynamical system†
This page was built for publication: Tableau methods for analysis and design of linear systems