If a finite extension of a Bernoulli shift has no finite rotation factors, it is Bernoulli
From MaRDI portal
Publication:599952
DOI10.1007/BF02761070zbMath0415.28011MaRDI QIDQ599952
Publication date: 1978
Published in: Israel Journal of Mathematics (Search for Journal in Brave)
Related Items (10)
Bernoulli property for certain skew products over hyperbolic systems ⋮ Informal research statement ⋮ Entropy and isomorphism theorems for actions of amenable groups ⋮ Entropy formula for random transformations ⋮ Loose Bernoullicity is preserved under exponentiation by integrable functions ⋮ Extensions à fibre constante ⋮ Classifying the isometric extensions of a Bernoulli shift ⋮ Counting the relatively finite factors of a Bernoulli shift ⋮ Examples in the entropy theory of countable group actions ⋮ Finitary isomorphisms of Brownian motions
Cites Work
- If a two-point extension of a Bernoulli shift has an ergodic square, then it is Bernoulli
- Factors of Bernoulli shifts
- Quelques propriétés des systèmes dynamiques qui se decomposent en un produit de deux systèmes dont l'un est un schema de Bernoulli
- Ergodic Properties of Affine Transformations and Flows on Nilmanifolds
This page was built for publication: If a finite extension of a Bernoulli shift has no finite rotation factors, it is Bernoulli