Infinite-dimensional attractors for evolution equations with \(p\)-Laplacian and their Kolmogorov entropy.
From MaRDI portal
Publication:601606
zbMath1212.37081MaRDI QIDQ601606
Mitsuharu Ôtani, Messoud A. Efendiev
Publication date: 28 October 2010
Published in: Differential and Integral Equations (Search for Journal in Brave)
Attractors and their dimensions, Lyapunov exponents for infinite-dimensional dissipative dynamical systems (37L30) Degenerate parabolic equations (35K65)
Related Items (15)
Long-time behavior of solutions for a fractional diffusion problem ⋮ Multiple equilibrium points in global attractors for some p-Laplacian equations ⋮ On the \(Z_2\) index of the global attractor for a class of \(p\)-Laplacian equations ⋮ On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis ⋮ On a class of degenerate parabolic equations with dynamic boundary conditions ⋮ Long-time behavior for a nonlinear parabolic problem with variable exponents ⋮ The existence of multiple equilibrium points in a global attractor for some \(p\)-Laplacian equation ⋮ The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems. II. ⋮ Long-term analysis of degenerate parabolic equations in \(\mathbb R^N\) ⋮ Infinite-dimensional attractors for parabolic equations with \(p\)-Laplacian in heterogeneous medium ⋮ The existence of multiple equilibrium points in a global attractor for some symmetric dynamical systems ⋮ Attractors for the degenerate Kirchhoff wave model with strong damping: existence and the fractal dimension ⋮ Long time behavior of a parabolic \(p\)-Laplacian equation coupled to a compartmental ODE system with an induction threshold phenomenon ⋮ On the dimension of global attractors for porous media equations ⋮ On the existence of regular global attractor for \(p\)-Laplacian evolution equation
This page was built for publication: Infinite-dimensional attractors for evolution equations with \(p\)-Laplacian and their Kolmogorov entropy.