Probability density in the complex plane
DOI10.1016/j.aop.2010.02.011zbMath1200.81099arXiv0912.4659OpenAlexW1980144528WikidataQ58981396 ScholiaQ58981396MaRDI QIDQ602002
Daniel W. Hook, Peter N. Meisinger, Carl M. Bender, Qing-hai Wang
Publication date: 29 October 2010
Published in: Annals of Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0912.4659
General and philosophical questions in quantum theory (81P05) Hamilton's equations (70H05) Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics (81Q05) Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics (81S30) General mathematical topics and methods in quantum theory (81Q99) Alternative quantum mechanics (including hidden variables, etc.) (81Q65)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Two-point Green's function in PT-symmetric theories
- Dynamical systems on infinitely sheeted Riemann surfaces
- Newtonian dynamics in the plane corresponding to straight and cyclic motions on the hyperelliptic curve \(\mu^{2}= \nu^{n}-1, n \in \mathbb Z\): ergodicity, isochrony and fractals
- Spectral equivalences, Bethe ansatz equations, and reality properties in 𝒫𝒯-symmetric quantum mechanics
- Classical trajectories of 1D complex non-Hermitian Hamiltonian systems
- Complex trajectories of a simple pendulum
- -symmetric extension of the Korteweg-de Vries equation
- -symmetric deformations of the Korteweg-de Vries equation
- Spontaneous breaking of classical PT symmetry
- Does the complex deformation of the Riemann equation exhibit shocks?
- Euler Incognito
- Quantum effects in classical systems having complex energy
- \mathcal{PT} -symmetric extensions of the supersymmetric Korteweg–de Vries equation
- Classical particle in a complex elliptic potential
- Exceptional points in quantum and classical dynamics
- Hyperasymptotics for integrals with saddles
- Quasi-exactly solvable quartic potential
- Calculation of the hidden symmetry operator in -symmetric quantum mechanics
- Real Spectra in Non-Hermitian Hamiltonians Having<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="bold-script">P</mml:mi><mml:mi mathvariant="bold-script">T</mml:mi></mml:math>Symmetry
- 𝓟𝓣-symmetric quantum mechanics
- Hyperasymptotics
- Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum
- Exponentially Fragile<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi mathvariant="script">P</mml:mi><mml:mi mathvariant="script">T</mml:mi></mml:math>Symmetry in Lattices with Localized Eigenmodes
- Classical trajectories for complex Hamiltonians
- The transition from regular to irregular motions, explained as travel on Riemann surfaces
- Complexified dynamical systems
- The ODE/IM correspondence