On the eigenvalues of weighted \(p(x)\)-Laplacian on \(\mathbb R^N\)
DOI10.1016/j.na.2010.08.037zbMath1202.35141OpenAlexW1987881486MaRDI QIDQ603034
Publication date: 5 November 2010
Published in: Nonlinear Analysis. Theory, Methods \& Applications. Series A: Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.na.2010.08.037
eigenvalueelectrorheological fluids\(p(x)\)-Laplacian operatorvariable exponent Lebesgue-Sobolev space
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) General topics in linear spectral theory for PDEs (35P05) Nonlinear elliptic equations (35J60) Magnetohydrodynamics and electrohydrodynamics (76W05) Nonlinear spectral theory, nonlinear eigenvalue problems (47J10) Weak solutions to PDEs (35D30)
Related Items (9)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Orlicz spaces and modular spaces
- Introduction à la théorie des points critiques et applications aux problèmes elliptiques
- Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem
- Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem.
- Resonance problems for the \(p\)-Laplacian
- Eigenvalues of the \(p(x)\)-Laplacian Neumann problems
- Eigenvalue problems for the \(p\)-Laplacian
- Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spacesLp(·) andWk,p(·)
- Asymptotic behaviour of the eigenvalues of the φ—laplacian
- Density of smooth functions in W k, p(x) ( Ω )
- Sobolev embeddings with variable exponent
- Maximal function on generalized Lebesgue spaces L^p(⋅)
- Sobolev embeddings for unbounded domain with variable exponent having values across N
- On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent
- Mathematical modeling of electrorheological materials
- On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\)
This page was built for publication: On the eigenvalues of weighted \(p(x)\)-Laplacian on \(\mathbb R^N\)