(ω, c)-periodic and asymptotically (ω, c)-periodic mild solutions to fractional Cauchy problems
DOI10.1080/00036811.2021.1967332zbMath1519.34069MaRDI QIDQ6039006
James Larrouy, Gaston Mandata N'Guérékata
Publication date: 3 May 2023
Published in: Applicable Analysis (Search for Journal in Brave)
mild solutionsfractional differential equationLeray-Schauder alternative theoremArzela-Ascoli theoremSchauder theorem\((\omega, c)\)-periodicasymptotically \((\omega, c)\)-periodic
Periodic solutions to ordinary differential equations (34C25) Nonlinear differential equations in abstract spaces (34G20) Applications of operator theory to differential and integral equations (47N20) Fractional ordinary differential equations (34A08)
Related Items (4)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Topics in fractional differential equations
- Fractional relaxation-oscillation and fractional diffusion-wave phenomena.
- Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations
- The fundamental solutions for the fractional diffusion-wave equation
- FRACTIONAL DIFFUSIVE WAVES
- (ω,c)‐asymptotically periodic functions, first‐order Cauchy problem, and Lasota‐Wazewska model with unbounded oscillating production of red cells
- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>ω</mml:mi> <mml:mo>,</mml:mo> <mml:mi>c</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:math>-periodic functions and mild solutions to abstract fractional integro-differential equations
- (&omega,c)- PSEUDO ALMOST PERIODIC FUNCTIONS, (&omega,c)- PSEUDO ALMOST AUTOMORPHIC FUNCTIONS AND APPLICATIONS
This page was built for publication: (ω, c)-periodic and asymptotically (ω, c)-periodic mild solutions to fractional Cauchy problems