Semilocal convergence analysis of an efficient Steffensen-type fourth order method
From MaRDI portal
Publication:6040609
DOI10.1007/s41478-022-00538-3zbMath1510.65106OpenAlexW4312204816MaRDI QIDQ6040609
Janak Raj Sharma, Ioannis K. Argyros, Harmandeep Singh
Publication date: 19 May 2023
Published in: The Journal of Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s41478-022-00538-3
Other nonlinear integral equations (45G10) Numerical computation of solutions to single equations (65H05) Numerical solutions to equations with nonlinear operators (65J15)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- On an efficient \(k\)-step iterative method for nonlinear equations
- Convergence of Steffensen's method for non-differentiable operators
- An optimal Steffensen-type family for solving nonlinear equations
- A two-step Steffensen's method under modified convergence conditions
- On the semilocal convergence of Newton-Kantorovich method under center-Lipschitz conditions
- A fast and efficient composite Newton-Chebyshev method for systems of nonlinear equations
- A family of Steffensen type methods with seventh-order convergence
- Semilocal convergence of a computationally efficient iterative method in Banach spaces under weak condition
- On the complexity of choosing majorizing sequences for iterative procedures
- Semilocal Convergence of Steffensen-Type Algorithms for Solving Nonlinear Equations
- Semi-local convergence of a derivative-free method for solving equations
- Design and analysis of a faster King-Werner-type derivative free method
This page was built for publication: Semilocal convergence analysis of an efficient Steffensen-type fourth order method