Embedding and extension results in fractional Musielak–Sobolev spaces
From MaRDI portal
Publication:6042677
DOI10.1080/00036811.2021.1948019zbMath1523.46024arXiv2007.11043OpenAlexW3044448513MaRDI QIDQ6042677
Mohammed Shimi, Mohammed Srati, Elhoussine Azroul, Abdelmoujib Benkirane
Publication date: 3 May 2023
Published in: Applicable Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2007.11043
Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Variational methods for second-order elliptic equations (35J20) Integro-differential operators (47G20) Fractional partial differential equations (35R11)
Related Items (3)
Non-linear elliptic unilateral problems with two lower-order terms in Orlicz spaces ⋮ On the L∞‐regularity for fractional Orlicz problems via Moser's iteration ⋮ On fractional Musielak-Sobolev spaces and applications to nonlocal problems
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces
- Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces
- Hitchhiker's guide to the fractional Sobolev spaces
- Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces
- Nonlinear diffusion of dislocation density and self-similar solutions
- Lebesgue and Sobolev spaces with variable exponents
- Orlicz spaces and modular spaces
- Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces
- Caratterizzazioni delle tracce sulla frontiera relative ad alcune classi di funzioni in \(n\) variabili
- Elliptic PDEs with fibered nonlinearities
- Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces
- Quasiconformal mappings and extendability of functions in Sobolev spaces
- Phase transition with the line-tension effect
- Electrorheological fluids: modeling and mathematical theory
- On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent
- Eigenvalue problems involving the fractional \(p(x)\)-Laplacian operator
- Eigenvalue problem associated with nonhomogeneous integro-differential operators
- Existence of solutions for a nonlocal type problem in fractional Orlicz Sobolev spaces
- General fractional Sobolev space with variable exponent and applications to nonlocal problems
- Nonlocal eigenvalue type problem in fractional Orlicz-Sobolev space. Nonlocal eigenvalue type problem
- Basic results of fractional Orlicz-Sobolev space and applications to non-local problems
- Existence results for fractional \(p(x, . )\)-Laplacian problem via the Nehari manifold approach
- Dual variational methods in critical point theory and applications
- Fractional order Orlicz-Sobolev spaces
- Variational Methods for Nonlocal Fractional Problems
- Fractional Sobolev spaces with variable exponents and fractional <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mrow> <mml:mo form="prefix">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo form="postfix">)</mml:mo> </mml:mrow> </mml:mrow> </mml:math>-Laplacians
- Financial Modelling with Jump Processes
- Existence and multiplicity of solutions for fractional p(x,.)-Kirchhoff-type problems in ℝN
- On a class of nonlocal problems in new fractional Musielak-Sobolev spaces
- On a class of fractional p(x) -Kirchhoff type problems
- Fractional Sobolev extension and imbedding
- Mathematical modeling of electrorheological materials
- Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws
- The random walk's guide to anomalous diffusion: A fractional dynamics approach
This page was built for publication: Embedding and extension results in fractional Musielak–Sobolev spaces