The Du Bois complex of a hypersurface and the minimal exponent
From MaRDI portal
Publication:6046466
DOI10.1215/00127094-2022-0074zbMath1518.14029arXiv2105.01245OpenAlexW3159293089MaRDI QIDQ6046466
Mircea Mustaţă, Sebastián Olano, Mihnea Popa, Jakub Witaszek
Publication date: 11 May 2023
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2105.01245
Singularities in algebraic geometry (14B05) Vanishing theorems in algebraic geometry (14F17) Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials (14F10) Mixed Hodge theory of singular varieties (complex-analytic aspects) (32S35)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Modules de Hodge polarisables. (Polarisable Hodge modules)
- Differential forms on log canonical spaces
- Duality for vanishing cycle functors
- Hyperrésolutions cubiques et descente cohomologique. (La plupart des exposés d'un séminaire sur la théorie de Hodge-Deligne, Barcelona (Spain), 1982)
- On \(b\)-function, spectrum and rational singularity
- Hodge filtration, minimal exponent, and local vanishing
- Upper bounds for roots of \(b\)-functions, following Kashiwara and Lichtin
- Hodge theory meets the minimal model program: a survey of log canonical and Du Bois singularities
- Differential forms in the h-topology
- A Simple Characterization of Du Bois Singularities
- Complexe de de Rham filtré d'une variété singulière
- On microlocal $b$-function
- Singularities of Pairs
- Extending holomorphic forms from the regular locus of a complex space to a resolution of singularities
- Hodge filtration on local cohomology, Du Bois complex and local cohomological dimension
- HODGE IDEALS FOR -DIVISORS, -FILTRATION, AND MINIMAL EXPONENT
- Hodge Ideals
- Du Bois singularities deform
- Mixed Hodge Structures
- Mixed Hodge modules
- Higher Du Bois singularities of hypersurfaces
This page was built for publication: The Du Bois complex of a hypersurface and the minimal exponent