Tensoring with infinite-dimensional modules in \(\mathcal {O}_0\)
DOI10.1007/S10468-009-9137-6zbMath1216.17006arXiv0708.2218OpenAlexW1594247101MaRDI QIDQ605330
Publication date: 23 November 2010
Published in: Algebras and Representation Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0708.2218
tensor productadjoint functor(co)monad structureBGG category \(\mathcal O\)exact endofunctorparabolic subcategory of \(\mathcal O_0\)principal block \(\mathcal O_0\)projective, tilting, or injective \(\mathfrak{g}\)-module
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Universal enveloping (super)algebras (17B35) Special categories (18B99) Simple, semisimple, reductive (super)algebras (17B20)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Moduln mit einem höchsten Gewicht
- Wave equation scattering in even-dimensional spaces
- A generalization of the Bernstein-Gelfand-Gelfand resolution
- Centers and translation functors for the category \({\mathcal O}\) over Kac-Moody algebras
- The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences
- A Translation Principle for Kac-Moody Algebras
- Splitting Criteria for -Modules Induced from a Parabolic and the Bernstein-Gelfand-Gelfand Resolution of a Finite Dimensional, Irreducible -Module
This page was built for publication: Tensoring with infinite-dimensional modules in \(\mathcal {O}_0\)