Cluster algebra structures on Poisson nilpotent algebras
From MaRDI portal
Publication:6070014
DOI10.1090/memo/1445arXiv1801.01963MaRDI QIDQ6070014
Kenneth R. Goodearl, Milen T. Yakimov
Publication date: 20 November 2023
Published in: Memoirs of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1801.01963
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Poisson algebras (17B63) Research exposition (monographs, survey articles) pertaining to commutative algebra (13-02) Cluster algebras (13F60)
Related Items (2)
A cluster structure on the coordinate ring of partial flag varieties ⋮ Poisson derivations of a semiclassical limit of a family of quantum second Weyl algebras
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- From quantum Ore extensions to quantum tori via noncommutative UFDs
- Lecture notes on cluster algebras
- Kac-Moody groups and cluster algebras
- The Laurent phenomenon
- Poisson structures on affine spaces and flag varieties. I: Matrix affine Poisson space.
- Lectures on algebraic quantum groups
- Noncommutative discriminants via Poisson primes
- Cluster algebras. III: Upper bounds and double Bruhat cells.
- Vanishing of derivations and prime spectra of quantum algebras
- Locally acyclic cluster algebras
- Factorial cluster algebras
- Poisson algebras via model theory and differential-algebraic geometry
- Cluster ensembles and Kac-Moody groups
- Quantum cluster algebras.
- Cluster algebras I: Foundations
- Cluster algebras: an introduction
- On the Spectra of Quantum Groups
- Quantum cluster algebras and quantum nilpotent algebras
- Cluster algebras and representation theory
- The Dixmier-Moeglin equivalence and a Gel’fand-Kirillov problem for Poisson polynomial algebras
- Non-commutative unique factorization domains
- QUANTUM UNIQUE FACTORISATION DOMAINS
- Non-Commutative Unique Factorisation Rings
- Double Bruhat cells and total positivity
- Symplectic ideals of poisson algebras and the poisson structure associated to quantum matrices
- Poisson orders, symplectic reflection algebras and representation theory
- Drinfeld double of GLn and generalized cluster structures
- The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras
- Bott–Samelson Varieties and Poisson Ore Extensions
- Exotic cluster structures on 𝑆𝐿_{𝑛}: the Cremmer–Gervais case
- Symplectic algebras and poisson algebras
- ORE EXTENSIONS AND POISSON ALGEBRAS
- Poisson Polynomial Rings
- On cluster theory and quantum dilogarithm identities
- Quantum cluster algebra structures on quantum nilpotent algebras
This page was built for publication: Cluster algebra structures on Poisson nilpotent algebras