Structure of 2-class groups in the \(\mathbb{Z}_2\)-extensions of certain real quadratic fields
From MaRDI portal
Publication:6072068
DOI10.1007/s40993-023-00478-2arXiv2302.06200OpenAlexW4387846725MaRDI QIDQ6072068
Anupam Saikia, H. Laxmi, Jaitra Chattopadhyay
Publication date: 29 November 2023
Published in: Research in Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2302.06200
Quadratic extensions (11R11) Class numbers, class groups, discriminants (11R29) Iwasawa theory (11R23)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Cyclicity of the unramified Iwasawa module
- On the computation of quadratic 2-class groups
- On the 2-class group of real multiquadratic fields
- On the Iwasawa invariants of the cyclotomic \(\mathbb Z_2\)-extensions of certain real quadratic fields
- The Iwasawa invariant \(\mu_p\) vanishes for abelian number fields
- Remarks on \(\mathbb{Z}_ p\)-extensions of number fields
- On the Iwasawa \(\lambda_2\)-invariants of certain families of real quadratic fields
- On the Iwasawa invariants of \(\mathbb Z_2\)-extensions of certain real quadratic fields
- Invariant generalized ideal classes -- structure theorems for \(p\)-class groups in \(p\)-extensions
- Sur les \(\ell\)-classes d'idéaux dans les extensions cycliques rélatives de degré premier \(\ell\). II
- On the Iwasawa \(\lambda\)-invariant of the cyclotomic \(\mathbb Z_2\)-extension of a real quadratic field
- Simultaneous indivisibility of class numbers of pairs of real quadratic fields
- Sur le rang du 2-groupe de classes de 𝑄({√{𝑚}},{√{𝑑}}) où 𝑚=2 ou un premier 𝑝≡1(𝑚𝑜𝑑4)
- On the strongly ambiguous classes of some biquadratic number fields
- Über Den Bizyklischen Biquadratischen Zahlkörper
- On Γ-extensions of algebraic number fields
- On the Iwasawa Invariants of Totally Real Number Fields
- On the vanishing of Iwasawa invariants of absolutely abelian p-extensions
- On some imaginary triquadratic number fields $k$ with ${\rm Cl}_2(k) \simeq (2, 4)$ or $(2, 2, 2)$
- On the Iwasawa λ-invariant of the cyclotomic ℤ2-extension of ℚ(pq) and the 2-part of the class number of ℚ(pq,2 + 2)
- Class field theory
- Fields \(\mathbb{Q}(i,\sqrt{2},\sqrt{p_1},\ldots,\sqrt{p_n})\) with cyclic 2-class group
This page was built for publication: Structure of 2-class groups in the \(\mathbb{Z}_2\)-extensions of certain real quadratic fields