Semi-parametric tail inference through probability-weighted moments
From MaRDI portal
Publication:607216
DOI10.1016/j.jspi.2010.08.015zbMath1200.62052OpenAlexW2025139459MaRDI QIDQ607216
Frederico Caeiro, M. Ivette Gomes
Publication date: 19 November 2010
Published in: Journal of Statistical Planning and Inference (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jspi.2010.08.015
heavy tailsextreme value indexstatistics of extremessemi-parametric estimationfirst order scale parameter
Asymptotic properties of nonparametric inference (62G20) Statistics of extreme values; tail inference (62G32) Monte Carlo methods (65C05)
Related Items (10)
Goodness-of-fit tests for semiparametric and parametric hypotheses based on the probability weighted empirical characteristic function ⋮ Competitive estimation of the extreme value index ⋮ A Log Probability Weighted Moment Estimator of Extreme Quantiles ⋮ Non-regular frameworks and the mean-of-order \(p\) Extreme value index estimation ⋮ Extreme Value Theory and Statistics of Univariate Extremes: A Review ⋮ Nonparametric probability weighted empirical characteristic function and applications ⋮ Semi-parametric probability-weighted moments estimation revisited ⋮ A Class of Semi-parametric Probability Weighted Moment Estimators ⋮ Extreme value index estimator using maximum likelihood and moment estimation ⋮ A location-invariant probability weighted moment estimation of the Extreme Value Index
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Semi-parametric second-order reduced-bias high quantile estimation
- Approximation of the distribution of excesses through a generalized probability-weighted moments method
- Statistics of extremes for IID data and breakthroughs in the estimation of the extreme value index: Laurens de Haan leading contributions
- Kernel estimates of the tail index of a distribution
- Residual life time at great age
- Statistical inference using extreme order statistics
- A simple general approach to inference about the tail of a distribution
- Optimal choice of sample fraction in extreme-value estimation
- Asymptotic normality of least-squares estimators of tail indices
- A new look at probability-weighted moments estimators
- Asymptotically best linear unbiased tail estimators under a second-order regular variation condition
- Asymptotic comparison of the mixed moment and classical extreme value index estimators
- Sur la distribution limite du terme maximum d'une série aléatoire
- The qq-estimator and heavy tails
- PORT Hill and Moment Estimators for Heavy-Tailed Models
- Reduced‐bias tail index estimation and the jackknife methodology
- Asymptotic Normality of Extreme Quantile Estimators Based on the Peaks-Over-Threshold Approach
- Tail Index Estimation for Heavy-Tailed Models: Accommodation of Bias in Weighted Log-Excesses
- Parameter and Quantile Estimation for the Generalized Pareto Distribution
- Estimation of Parameters and Larger Quantiles Based on the k Largest Observations
- Comparison of tail index estimators
- Order Statistics
- A Sturdy Reduced-Bias Extreme Quantile (VaR) Estimator
- Generalizations of the Hill estimator -- asymptotic versus finite sample behaviour
This page was built for publication: Semi-parametric tail inference through probability-weighted moments