Factors in randomly perturbed hypergraphs
From MaRDI portal
Publication:6074679
DOI10.1002/rsa.21035zbMath1522.05420arXiv2008.01031OpenAlexW3186350060MaRDI QIDQ6074679
Jie Han, Guilherme Oliveira Mota, Yu-Lin Chang, Patrick Morris, Yoshiharu Kohayakawa
Publication date: 12 October 2023
Published in: Random Structures & Algorithms (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2008.01031
Related Items (3)
Embedding clique-factors in graphs with low \(\ell\)-independence number ⋮ Graph Tilings in Incompatibility Systems ⋮ Clique-factors in graphs with sublinear -independence number
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hamiltonicity in randomly perturbed hypergraphs
- Supersaturated graphs and hypergraphs
- Hamilton \(\ell\)-cycles in randomly perturbed hypergraphs
- \(H\)-factors in dense graphs
- The minimum degree threshold for perfect graph packings
- Spanning trees in random graphs
- Recent advances on Dirac-type problems for hypergraphs
- Bounded-Degree Spanning Trees in Randomly Perturbed Graphs
- On the Complexity of General Graph Factor Problems
- A Dirac-Type Theorem for 3-Uniform Hypergraphs
- Vertex Ramsey properties of randomly perturbed graphs
- On smoothed analysis in dense graphs and formulas
- Factors in random graphs
- Embedding large subgraphs into dense graphs
- How many random edges make a dense graph hamiltonian?
- On a Ramsey--Turán Variant of the Hajnal--Szemerédi Theorem
- Nonvertex‐Balanced Factors in Random Graphs
- Sprinkling a Few Random Edges Doubles the Power
- Ramsey properties of randomly perturbed graphs: cliques and cycles
- EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS
- Powers of Hamiltonian cycles in randomly augmented graphs
- Spanning trees in randomly perturbed graphs
- Powers of tight Hamilton cycles in randomly perturbed hypergraphs
- Universality for bounded degree spanning trees in randomly perturbed graphs
- Tilings in Randomly Perturbed Dense Graphs
- Cycles and Matchings in Randomly Perturbed Digraphs and Hypergraphs
- Proof of the Alon-Yuster conjecture
- Tilings in randomly perturbed graphs: Bridging the gap between Hajnal‐Szemerédi and Johansson‐Kahn‐Vu
This page was built for publication: Factors in randomly perturbed hypergraphs