A GENERALISATION OF WITTEN’S CONJECTURE FOR THE PIXTON CLASS AND THE NONCOMMUTATIVE KDV HIERARCHY
From MaRDI portal
Publication:6076547
DOI10.1017/s1474748022000354zbMath1523.14052arXiv2103.04630WikidataQ113857298 ScholiaQ113857298MaRDI QIDQ6076547
Publication date: 17 October 2023
Published in: Journal of the Institute of Mathematics of Jussieu (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2103.04630
Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) (37K10) Families, moduli of curves (algebraic) (14H10)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Recursion relations for double ramification hierarchies
- BCFG Drinfeld-Sokolov hierarchies and FJRW-theory
- Pixton's double ramification cycle relations
- Intersection theory on the moduli space of curves and the matrix Airy function
- Gromov-Witten classes, quantum cohomology, and enumerative geometry
- Hodge integrals and Gromov-Witten theory
- Tau-structure for the double ramification hierarchies
- Integrability, quantization and moduli spaces of curves
- Double ramification cycles and integrable hierarchies
- DR/DZ equivalence conjecture and tautological relations
- Double ramification cycles on the moduli spaces of curves
- Commuting flows and conservation laws for noncommutative Lax hierarchies
- Quadratic double ramification integrals and the noncommutative KdV hierarchy
- Integrals of $\psi$-classes over double ramification cycles
- Relations on \overline{ℳ}_{ℊ,𝓃} via 3-spin structures
- Integrable Systems of Double Ramification Type
- Logarithmic series and Hodge integrals in the tautological ring. With an appendix by Don Zagier.
This page was built for publication: A GENERALISATION OF WITTEN’S CONJECTURE FOR THE PIXTON CLASS AND THE NONCOMMUTATIVE KDV HIERARCHY