Schwarzian norm estimates for some classes of analytic functions
From MaRDI portal
Publication:6077111
DOI10.1007/s00009-023-02496-xzbMath1522.30006arXiv2212.06374OpenAlexW4386282697MaRDI QIDQ6077111
Publication date: 17 October 2023
Published in: Mediterranean Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2212.06374
univalent functionsstarlike functionstwo-point distortionSchwarzian normconvex function in some direction
Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.) (30C45) General theory of univalent and multivalent functions of one complex variable (30C55)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Schwarzian norms and two-point distortion
- Region of variability of two subclasses of univalent functions
- Explicit quasiconformal extensions for some classes of univalent functions
- A property of convex conformal maps
- Domain constants associated with Schwarzian derivative
- Ein Verzerrungssatz für schlichte Funktionen
- Generalized Zalcman conjecture for convex functions of order \(\alpha\)
- Preserving properties and pre-Schwarzian norms of nonlinear integral transforms
- Univalent functions \(f(z)\) for which \(zf'(z)\) is spirallike
- Analytic functions convex in one direction
- COEFFICIENT INEQUALITIES AND YAMASHITA’S CONJECTURE FOR SOME CLASSES OF ANALYTIC FUNCTIONS
- Sharp norm estimate of Schwarzian derivative for a class of convex functions
- A sharp bound for the Schwarzian derivative of concave functions
- A Uniqueness Theorem for Beltrami Equations
- Verzerrungssätze und Koeffizientenbedingungen von GRUNSKYschen Typ für quasikonforme Abbildungen
- The Schwarzian derivative and schlicht functions
- On uniformly convex functions
This page was built for publication: Schwarzian norm estimates for some classes of analytic functions