Sub-elliptic boundary value problems in flag domains
From MaRDI portal
Publication:6077518
DOI10.1515/acv-2021-0077zbMath1525.35224arXiv2006.08293OpenAlexW4221006766WikidataQ114007275 ScholiaQ114007275MaRDI QIDQ6077518
Publication date: 18 October 2023
Published in: Advances in Calculus of Variations (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2006.08293
Dirichlet problemHeisenberg groupsingular integralsNeumann problemKohn-Laplaciansub-elliptic partial differential equations
Subelliptic equations (35H20) PDEs on Heisenberg groups, Lie groups, Carnot groups, etc. (35R03) Potential theory on fractals and metric spaces (31E05)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Neumann problem for the Kohn-Laplacian on the Heisenberg group \(\mathbb H_n\)
- Layer potentials, Kac's problem, and refined Hardy inequality on homogeneous Carnot groups
- Locality of the perimeter in Carnot groups and chain rule
- Parabolic \(L^p\) Dirichlet boundary value problem and VMO-type time-varying domains
- Some remarks about parametrizations of intrinsic regular surfaces in the Heisenberg group
- Isoperimetric inequalities for the logarithmic potential operator
- Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation
- Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains
- Wiener criterion for a class of degenerate elliptic operators
- The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. I
- The Dirichlet problem for the Kohn Laplacian on the Heisenberg group. II
- L'intégrale de Cauchy définit un opératuer borne sur \(L^ 2 \)pour les courbes lipschitziennes
- Potential techniques for boundary value problems on \(C^1\)-domains
- Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot-Carathéodory metrics
- Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials
- Singular integrals on regular curves in the Heisenberg group
- Pauls rectifiable and purely Pauls unrectifiable smooth hypersurfaces
- Inequalities for modified Bessel functions and their integrals
- Boundedness of singular integrals on \(C^{1,{\alpha}}\) intrinsic graphs in the Heisenberg group
- On Green functions for Dirichlet sub-Laplacians on \(H\)-type groups
- Smooth approximation for intrinsic Lipschitz functions in the Heisenberg group
- Absolutely continuous functions with values in a metric space
- Un problème aux limites pour une classe d'opérateurs hypoelliptiques du second ordre. (A problem on the limits for a class of second order hypoelliptic operators)
- \(L^ 2\) solvability and representation by caloric layer potentials in time-varying domains
- Intrinsic Lipschitz graphs within Carnot groups
- Fourier Analysis and Nonlinear Partial Differential Equations
- Semmes surfaces and intrinsic Lipschitz graphs in the Heisenberg group
- The Method of Layer Potentials for the Heat Equation in Lipschitz Cylinders
- Stratified Lie Groups and Potential Theory for their Sub-Laplacians
- Estimates for the \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop \partial \limits^ - _b $\end{document} complex and analysis on the heisenberg group
- Cauchy integrals on Lipschitz curves and related operators
- Properties of harmonic measures in the Dirichlet problem for nilpotent Lie groups of Heisenberg type
- The method of layer potentials for the heat equation in time-varying domains
- The coarea inequality
- Classical Fourier Analysis
- Non‐coercive boundary value problems
- Mutual Absolute Continuity of Harmonic and Surface Measures for Hormander Type Operators
- A fundamental solution for a subelliptic operator
- Continua of Finite Linear Measure I
- Rectifiability and perimeter in the Heisenberg group
This page was built for publication: Sub-elliptic boundary value problems in flag domains