SUPERCONGRUENCES OF MULTIPLE HARMONIC <i>q</i>-SUMS AND GENERALIZED FINITE/SYMMETRIC MULTIPLE ZETA VALUES
DOI10.2206/kyushujm.77.75zbMath1528.11088arXiv2012.07067OpenAlexW4387656408MaRDI QIDQ6091036
Koji Tasaka, Yoshihiro Takeyama
Publication date: 23 November 2023
Published in: Kyushu Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2012.07067
\(p\)-adic multiple zeta valuemultiple zeta value\(q\)-supercongruencessymmetric multiple zeta valuemultiple harmonic \(q\)-sumthe Kaneko-Zagier conjecture
(q)-calculus and related topics (05A30) Binomial coefficients; factorials; (q)-identities (11B65) Congruences; primitive roots; residue systems (11A07) Multiple Dirichlet series and zeta functions and multizeta values (11M32)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Mixed Tate motives over \(\mathbb{Z}\)
- Bowman-Bradley type theorem for finite multiple zeta values in \(\mathcal{A}_2\)
- Finite and symmetric colored multiple zeta values and multiple harmonic \(q\)-series at roots of unity
- A generalization of the duality for finite multiple harmonic \(q\)-series
- Holonomic \(\mathcal D\)-modules and positive characteristic
- \(q\)-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher
- Mixed Tate motives and multiple zeta values
- Multiple \(q\)-zeta values
- Double shuffles of multiple polylogarithms at roots of unity
- Relations of multiple zeta values and their algebraic expression.
- On variants of symmetric multiple zeta-star values and the cyclic sum formula
- Double shuffle relations for refined symmetric multiple zeta values
- Pro-unipotent harmonic actions and dynamical properties of \(p\)-adic cyclotomic multiple zeta values
- Some \(q\)-congruences for homogeneous and quasi-homogeneous multiple \(q\)-harmonic sums
- The \(\mathbf p\)-adic duality for the finite star-multiple polylogarithms
- Duality for finite multiple harmonic \(q\)-series
- Truncated \(t\)-adic symmetric multiple zeta values and double shuffle relations
- Finite real multiple zeta values generate the whole space Z
- On q-Analog of Wolstenholme Type Congruences for Multiple Harmonic Sums
- Cyclotomic analogues of finite multiple zeta values
- Cyclic sums of finite multiple zeta values
- QUASI-SYMMETRIC FUNCTIONS AND MOD <b><i>p </i></b>MULTIPLE HARMONIC SUMS
- The Completed Finite Period Map and Galois Theory of Supercongruences
- Asymptotic relations for truncated multiple zeta values
- On the sum formula for the $q$-analogue of non-strict multiple zeta values
- WOLSTENHOLME TYPE THEOREM FOR MULTIPLE HARMONIC SUMS
- Bernoulli Numbers and Zeta Functions
- A q-Analogue of Wolstenholme's Harmonic Series Congruence
- Derivation and double shuffle relations for multiple zeta values
- p -adic multiple zeta values II. Tannakian interpretations
This page was built for publication: SUPERCONGRUENCES OF MULTIPLE HARMONIC <i>q</i>-SUMS AND GENERALIZED FINITE/SYMMETRIC MULTIPLE ZETA VALUES