Effective local finite generation of multiplier ideal sheaves
From MaRDI portal
Publication:609654
DOI10.5802/aif.2565zbMath1210.32007arXivmath/0603734OpenAlexW1578227260MaRDI QIDQ609654
Publication date: 1 December 2010
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/math/0603734
Stein manifoldBergman kernelsingular Hermitian metricclosed positive currentmultiplier ideal sheaf\(L^2\) estimatespsh function
Analytic sheaves and cohomology groups (32C35) Bergman spaces of functions in several complex variables (32A36) Plurisubharmonic functions and generalizations (32U05)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A numerical criterion for very ample line bundles
- Bergman kernels and local holomorphic Morse inequalities
- Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature
- On a set of polarized Kähler metrics on algebraic manifolds
- Regularization of currents with mass control and singular Morse inequalities
- Champs magnétiques et inégalités de Morse pour la d-cohomologie. (Magnetic fields and Morse inequalities for d-cohomology)
- Extension of meromorphic maps into Kähler manifolds
- Necessary density conditions for sampling an interpolation of certain entire functions
- \(L^ 2\) estimates and existence theorems for the \(\partial\)-operator
- Valuative analysis of planar plurisubharmonic functions
- ON THE VOLUME OF A LINE BUNDLE
- Application des techniques $L^2$ à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids
- Sampling in weighted \(L^p\) spaces of entire functions in \(\mathbb{C}^n\) and estimates of the Bergman kernel
- A subadditivity property of multiplier ideals.
This page was built for publication: Effective local finite generation of multiplier ideal sheaves