Idempotent subquotients of symmetric quasi-hereditary algebras.
From MaRDI portal
Publication:610617
zbMath1227.16013arXiv0812.3286MaRDI QIDQ610617
Volodymyr Mazorchuk, Vanessa Miemietz
Publication date: 8 December 2010
Published in: Illinois Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/0812.3286
Module categories in associative algebras (16D90) Homological functors on modules (Tor, Ext, etc.) in associative algebras (16E30) Representations of associative Artinian rings (16G10) Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc. (16E60)
Related Items (4)
Ringel duality and Auslander-Dlab-Ringel algebras ⋮ Pseudocompact algebras and highest weight categories ⋮ Quasi-hereditary algebras, exact Borel subalgebras, \(A_\infty\)-categories and boxes. ⋮ Dominant dimension and almost relatively true versions of Schur's theorem.
Cites Work
- Highest weight categories arising from Khovanov's diagram algebra. II: Koszulity
- Quasi-hereditary algebras
- Graded, selfinjective, and Koszul algebras
- Exact Borel subalgebras of quasi-hereditary algebras. I. (With an appendix by Leonard Scott)
- The Weyl extension algebra of \(GL_2(\overline{\mathbb F}_p)\).
- Cubist algebras.
- Projective-injective modules, Serre functors and symmetric algebras
- Quadratic duals, Koszul dual functors, and applications
- Every Semiprimary Ring is the Endomorphism Ring of a Projective Module Over a Quasi-Hereditary Ring
- Exact borel subalgebras of quasi-hereditary algebras. II
- Homotopy, homology, and GL2
- A categorification of integral Specht modules
- Unnamed Item
- Unnamed Item
This page was built for publication: Idempotent subquotients of symmetric quasi-hereditary algebras.