Bayesian point estimation and predictive density estimation for the binomial distribution with a restricted probability parameter
From MaRDI portal
Publication:6107551
DOI10.1080/03610926.2021.1980046arXiv2103.00518MaRDI QIDQ6107551
Publication date: 3 July 2023
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2103.00518
dominanceKullback-Leibler divergencebinomial distributionrestricted parameter spaceBayesian point estimationBayesian predictive density estimation
Cites Work
- Unnamed Item
- Unnamed Item
- Minimaxity in predictive density estimation with parametric constraints
- Estimation of the parameters of an exponential distribution under constrained location
- On predictive density estimation for gamma models with parametric constraints
- Minimax estimation of a restricted mean for a one-parameter exponential family
- Restricted parameter space estimation problems. Admissibility and minimaxity properties.
- Estimating a bounded normal mean
- Estimation of parameters of exponential distribution in the truncated space using asymmetric loss function
- Uniform priors on convex sets improve risk
- Improving on the MLE of a bounded normal mean.
- Asymptotically minimax Bayesian predictive densities for multinomial models
- On improved predictive density estimation with parametric constraints
- Bayesian predictive distribution for a negative binomial model
- Goodness of prediction fit
- Bayesian predictive distribution for a Poisson model with a parametric restriction
- Negative Moments of Positive Random Variables
- Posterior predictive arguments in favor of the Bayes-Laplace prior as the consensus prior for binomial and multinomial parameters
This page was built for publication: Bayesian point estimation and predictive density estimation for the binomial distribution with a restricted probability parameter