Least squares estimation for discretely observed Ornstein–Uhlenbeck process driven by small stable noises
From MaRDI portal
Publication:6107603
DOI10.1080/03610926.2021.1986537OpenAlexW3202180198MaRDI QIDQ6107603
Publication date: 3 July 2023
Published in: Communications in Statistics - Theory and Methods (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1080/03610926.2021.1986537
asymptotic distributionconsistencyOrnstein-Uhlenbeck processleast squares estimationdiscrete observationsmall \(\alpha\)-stable noises
Asymptotic properties of parametric estimators (62F12) Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10)
Cites Work
- Unnamed Item
- Least squares estimators for discretely observed stochastic processes driven by small Lévy noises
- Continuous-discrete state-space modeling of panel data with nonlinear filter algorithms
- Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations
- Maximum likelihood estimation of McKean-Vlasov stochastic differential equation and its application
- Some time change representations of stable integrals, via predictable transformations of local martingales
- A least squares estimator for discretely observed Ornstein-Uhlenbeck processes driven by symmetric \(\alpha \)-stable motions
- Asymptotic parameter estimation for a class of linear stochastic systems using Kalman-Bucy filtering
- Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes
- Least squares estimator for Ornstein-Uhlenbeck processes driven by \(\alpha \)-stable motions
- Estimation for incomplete information stochastic systems from discrete observations
- Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient
- Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes
- Asymptotic properties of Bayes estimators for Gaussian Itô\,-\,processes with noisy observations
- Maximum likelihood estimation for the drift parameter in diffusion processes
- Pricing power options with a generalized jump diffusion
- Estimation for misspecified ergodic diffusion processes from discrete observations
- Drift parameter estimation for nonlinear stochastic differential equations driven by fractional Brownian motion
This page was built for publication: Least squares estimation for discretely observed Ornstein–Uhlenbeck process driven by small stable noises