Embeddings of Decomposition Spaces
DOI10.1090/memo/1426zbMath1525.42001arXiv1605.09705OpenAlexW2409938940MaRDI QIDQ6108367
Publication date: 29 June 2023
Published in: Memoirs of the American Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1605.09705
embeddingsBesov spacesfunction spacescoorbit spacessmoothness spacesdecomposition spaces\( \alpha \)-modulation spacesfrequency coverings
Nontrigonometric harmonic analysis involving wavelets and other special systems (42C40) Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Function spaces arising in harmonic analysis (42B35) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Multipliers for harmonic analysis in several variables (42B15) Linear symmetric and selfadjoint operators (unbounded) (47B25) Unitary representations of locally compact groups (22D10) Inequalities in approximation (Bernstein, Jackson, Nikol'ski?-type inequalities) (41A17) General harmonic expansions, frames (42C15) Research exposition (monographs, survey articles) pertaining to functional analysis (46-02) Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces (46B15) Banach spaces of continuous, differentiable or analytic functions (46E15) Research exposition (monographs, survey articles) pertaining to harmonic analysis on Euclidean spaces (42-02)
Related Items
Cites Work
- Sharpness of complex interpolation on \(\alpha \)-modulation spaces
- Sharp estimates of unimodular multipliers on frequency decomposition spaces
- \(\alpha\)-modulation spaces. I. Scaling, embedding and algebraic properties
- Shearlet smoothness spaces
- Frames adapted to a phase-space cover
- The inclusion relations between \(\alpha\)-modulation spaces and \(L^{p}\)-Sobolev spaces or local Hardy spaces
- Characterization of coorbit spaces with phase-space covers
- Shearlet coorbit spaces: Compactly supported analyzing shearlets, traces and embeddings
- Shearlet coorbit spaces and associated Banach frames
- Banach frames for \(\alpha\)-modulation spaces
- Orthonormal bases for \(\alpha\)-modulation spaces
- The continuous shearlet transform in arbitrary space dimensions
- Frame decomposition of decomposition spaces
- Boundedness for pseudodifferential operators on multivariate \(\alpha \)-modulation spaces
- Properties of functions in the spaces \(\Lambda^r_{p,\theta}\)
- Quasi-orthogonal decompositions of structured frames.
- Full characterization of the embedding relations between \(\alpha\)-modulation spaces
- Shearlet coorbit spaces: traces and embeddings in higher dimensions
- Bandlimited shearlet-type frames with nice duals
- Design and properties of wave packet smoothness spaces
- Wavelet coorbit spaces viewed as decomposition spaces
- The dilation property of modulation spaces and their inclusion relation with Besov spaces
- The \(\alpha \)-modulation transform: admissibility, coorbit theory and frames of compactly supported functions
- Atomic and molecular decompositions of anisotropic Besov spaces
- Banach frames for multivariate \(\alpha\)-modulation spaces
- COORBIT SPACE THEORY FOR THE TOEPLITZ SHEARLET TRANSFORM
- Banach Spaces of Distributions Defined by Decomposition Methods, I
- Representation Theorems and Atomic Decomposition of Besov Spaces
- From Frazier-Jawerth characterizations of Besov spaces to wavelets and decomposition spaces
- Realizations of homogeneous Besov and Lizorkin‐Triebel spaces
- Structured, compactly supported Banach frame decompositions of decomposition spaces
- Embeddings of shearlet coorbit spaces into Sobolev spaces
- Classical Fourier Analysis
- Modern Fourier Analysis
- Generalized coorbit theory, Banach frames, and the relation to α-modulation spaces
- Temperatures, Riesz Potentials, and the Lipschitz Spaces of Herz
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item