Relative braid group symmetries on \(\imath\)quantum groups of Kac-Moody type
From MaRDI portal
Publication:6111226
DOI10.1007/s00029-023-00861-yarXiv2209.12860OpenAlexW4385210995MaRDI QIDQ6111226
Publication date: 3 August 2023
Published in: Selecta Mathematica. New Series (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2209.12860
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Quantum symmetric Kac-Moody pairs
- Braid group actions on coideal subalgebras of quantized enveloping algebras
- Quantum groups at roots of 1
- Universal K-matrix for quantum symmetric pairs
- Formulae of \(\iota\)-divided powers in \(\mathbf{U}_q(\mathfrak{sl}_2)\)
- A Drinfeld-type presentation of affine \(\imath\) quantum groups. II: Split BCFG type
- Braid group symmetries on quasi-split \(\imath\)quantum groups via \(\imath\)Hall algebras
- Serre-Lusztig relations for \({\iota}\) quantum groups. III
- Braid group action for the \(q\)-Onsager algebra
- Braid group actions for quantum symmetric pairs of type AIII/AIV
- Factorisation of quasi \(K\)-matrices for quantum symmetric pairs
- The half-infinite XXZ chain in Onsager's approach
- Hall algebras and quantum symmetric pairs. II: Reflection functors
- Serre-Lusztig relations for \(\imath\) quantum groups
- Finite Dimensional Hopf Algebras Arising From Quantized Universal Enveloping Algebras
- Hecke Algebras with Unequal Parameters
- A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs
- The bar involution for quantum symmetric pairs – hidden in plain sight
- Universal K-matrices for quantum Kac-Moody algebras
- Introduction to quantum groups
- Hall algebras and quantum symmetric pairs I: Foundations
This page was built for publication: Relative braid group symmetries on \(\imath\)quantum groups of Kac-Moody type