Existence of ground state solutions for Kirchhoff problems with Hardy potential
From MaRDI portal
Publication:6113180
DOI10.1007/s12346-023-00841-9zbMath1520.35081MaRDI QIDQ6113180
Publication date: 8 August 2023
Published in: Qualitative Theory of Dynamical Systems (Search for Journal in Brave)
Variational methods applied to PDEs (35A15) Existence problems for PDEs: global existence, local existence, non-existence (35A01) Quasilinear elliptic equations (35J62)
Cites Work
- Unnamed Item
- Existence and concentration result for the Kirchhoff type equations with general nonlinearities
- The elliptic Kirchhoff equation in \(\mathbb {R}^{N}\) perturbed by a local nonlinearity.
- Existence and multiplicity of solutions for Kirchhoff type equations
- Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb R^3\)
- Existence and bifurcation of solutions for an elliptic degenerate problem
- Solutions for semilinear elliptic equations with critical exponents and Hardy potential
- Nonlinear scalar field equations. I: Existence of a ground state
- Nontrivial solutions of Kirchhoff-type problems via the Yang index
- Existence and asymptotic behavior of ground state solutions for Schrödinger equations with Hardy potential and Berestycki-Lions type conditions
- Existence results of positive solutions of Kirchhoff type problems
- Remarks on an elliptic equation of Kirchhoff type
- Hardy inequalities and some critical elliptic and parabolic problems
- The role played by space dimension in elliptic critical problems
- The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential
- Elliptic partial differential equations of second order
- Elliptic problems with critical exponents and Hardy potentials.
- Minimax theorems
- Existence and multiplicity of solutions for Kirchhoff type problem with critical exponent
- Ground states for Kirchhoff equations without compact condition
- On a nonlocal elliptic system of \(p\)-Kirchhoff-type under Neumann boundary condition
- Positive solutions for a quasilinear elliptic equation of Kirchhoff type
- Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials
- A Relation Between Pointwise Convergence of Functions and Convergence of Functionals
- The Heat Equation with a Singular Potential
- On the Best Constant for a Weighted Sobolev-Hardy Inequality
- On an elliptic equation of p-Kirchhoff type via variational methods
- Selected new aspects of the calculus of variations in the large
- A positive solution for a nonlinear Schroedinger equation on R^N
- A remark on least energy solutions in $\mathbf {R}^N$
- On the Well-Posedness of the Kirchhoff String
- Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation
- Existence of solutions for singular critical growth semilinear elliptic equations
This page was built for publication: Existence of ground state solutions for Kirchhoff problems with Hardy potential