The cohomology of Lubin-Tate spaces is free
DOI10.1215/00127094-2022-0067arXiv1309.1946MaRDI QIDQ6117101
Publication date: 19 July 2023
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1309.1946
stratificationcatégories quasi-abéliennescorrespondances de Jacquet-Langlandscorrespondances de Langlandscycles évanescentsfaisceaux perversfiltration de monodromiemodules formelsthéorie de torsionvariétés de Shimura
Abelian varieties of dimension (> 1) (11G10) Other groups and their modular and automorphic forms (several variables) (11F55) Galois representations (11F80) Arithmetic aspects of modular and Shimura varieties (11G18) Representation-theoretic methods; automorphic representations over local and global fields (11F70) Formal groups, (p)-divisible groups (14L05)
Related Items
Cites Work
- \(\ell\)-integral nonabelian Lubin-Tate theory
- Induced lattices of Lubin-Tate elliptic representations.
- Induced \(R\)-representations of \(p\)-adic reductive groups
- Étale cohomology for non-Archimedean analytic spaces
- On a lemma of Ribet.
- \(l\)-modular representations of a \(p\)-adic reductive group with \(l\neq p\)
- Vanishing cycles for formal schemes. II
- Decomposition numbers for perverse sheaves
- Monodromy of perverse sheaves on vanishing cycles on some Shimura varieties
- Galois irreducibility implies cohomology freeness for KHT Shimura varieties
- The Geometry and Cohomology of Some Simple Shimura Varieties. (AM-151)
- Coxeter Orbits and Modular Representations
- Induced representations of reductive ${\germ p}$-adic groups. II. On irreducible representations of ${\rm GL}(n)$
- Induced representations of reductive ${\germ p}$-adic groups. I
- Groupe mirabolique, stratification de Newton raffinée et cohomologie des espaces de Lubin-Tate
- Filtrations de stratification de quelques variétés de Shimura simples
- Un cas simple de correspondance de Jacquet-Langlands modulo ℓ
- Local Ihara’s Lemma and Applications
- Unnamed Item
- Unnamed Item