Optimal norm estimate of operators related to the harmonic Bergman projection on the ball
From MaRDI portal
Publication:611817
DOI10.2748/tmj/1287148616zbMath1203.31006OpenAlexW2055958811MaRDI QIDQ611817
Boo Rim Choe, Kyesook Nam, Hyungwoon Koo
Publication date: 14 December 2010
Published in: Tôhoku Mathematical Journal. Second Series (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.2748/tmj/1287148616
Harmonic, subharmonic, superharmonic functions in higher dimensions (31B05) Normal functions of one complex variable, normal families (30D45) Integral representations, integral operators, integral equations methods in higher dimensions (31B10)
Related Items
The precise norm of a class of Forelli-Rudin type operators on the Siegel upper half space ⋮ Unnamed Item ⋮ Estimates for harmonic reproducing kernel and Bergman type operators on mixed norm and Besov spaces in the real ball ⋮ A Hardy-Littlewood type theorem for harmonic Bergman-Orlicz spaces and applications ⋮ Sharp Forelli-Rudin estimates and the norm of the Bergman projection ⋮ Double integral characterizations of harmonic Bergman spaces ⋮ Norm of an integral operator related to the harmonic Bergman projection ⋮ Fractional integration in weighted Lebesgue spaces ⋮ Harmonic Besov spaces on the ball ⋮ The harmonic Dirichlet-Besov space and the optimal norm for the Bergman projection ⋮ Bergman projections, Berezin transforms and Cauchy transform on exponential Orlicz spaces and Lorentz-Zygmund spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Norm estimation of the harmonic Bergman projection on half-spaces
- Reproducing kernels for harmonic Bergman spaces of the unit ball
- Harmonic Bergman functions on the unit ball in \(\mathbb R^n\)
- Positive Schatten class Toeplitz operators on the ball
- Boundary regularity in the Dirichlet problem for the invariant Laplacians $\Delta _\gamma $ on the unit real ball
- Derivatives of harmonic Bergman and Bloch functions on the ball