On large deviation principles and the Monge-Ampère equation (following Berman, Hultgren)
From MaRDI portal
Publication:6124086
DOI10.1007/978-3-031-17859-7_40arXiv2206.04638OpenAlexW4377236234MaRDI QIDQ6124086
Publication date: 9 April 2024
Published in: Springer Proceedings in Mathematics & Statistics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2206.04638
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Kähler-Einstein manifolds (32Q20) Notions of stability for complex manifolds (32Q26) Birational geometry (14Exx)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Large deviations for zeros of \(P(\varphi)_2\) random polynomials
- Test configurations, large deviations and geodesic rays on toric varieties
- Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics
- Construction of the parallel transport in the Wasserstein space
- Méthodes de contrôle optimal en analyse complexe. I: Résolution d'équation de Monge Ampère
- The Dirichlet problem for the multidimensional Monge-Ampère equation
- Méthode de contrôle optimal en analyse complexe ou réelle. III. Diffusion des fonctions plurisousharmoniques ou convexes
- Scalar curvature and projective embeddings. I
- Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator
- Large deviations for Gibbs measures with singular Hamiltonians and emergence of Kähler-Einstein metrics
- The Monge-Ampère operator and geodesics in the space of Kähler potentials
- Smooth and Singular Kähler–Einstein Metrics
- Large Deviations of Empirical Measures of Zeros of Random Polynomials
- Probabilistic Approach to Regularity
- Eigenfunctions of the Laplacian on a Riemannian Manifold
- Green, Brown, and Probability and Brownian Motion on the Line
- SMOOTHNESS OF THE VALUE FUNCTION FOR A CONTROLLED DIFFUSION PROCESS IN A DOMAIN
- ON MOMENT ESTIMATES FOR QUASIDERIVATIVES OF SOLUTIONS OF STOCHASTIC EQUATIONS WITH RESPECT TO THE INITIAL DATA, AND THEIR APPLICATION
- ON CONTROL OF DIFFUSION PROCESSES ON A SURFACE IN EUCLIDEAN SPACE
- Logarithmic Sobolev Inequalities
- Large Deviations of Empirical Measures of Zeros on Riemann Surfaces
- Convex Analysis
- Permanental Point Processes on Real Tori, Theta Functions and Monge–Ampère Equations
- Optimal Transport
- Large deviation principles and complete equivalence and nonequivalence results for pure and mixed ensembles
- Kähler-Einstein metrics with edge singularities
This page was built for publication: On large deviation principles and the Monge-Ampère equation (following Berman, Hultgren)