Prelog Chow rings and degenerations

From MaRDI portal
Publication:6133344

DOI10.1007/S12215-022-00750-XarXiv1911.08930OpenAlexW2989921855MaRDI QIDQ6133344

Author name not available (Why is that?)

Publication date: 24 July 2023

Published in: (Search for Journal in Brave)

Abstract: For a simple normal crossing variety X, we introduce the concepts of prelog Chow ring, saturated prelog Chow group, as well as their counterparts for numerical equivalence. Thinking of X as the central fibre in a (strictly) semistable degeneration, these objects can intuitively be thought of as consisting of cycle classes on X for which some initial obstruction to arise as specializations of cycle classes on the generic fibre is absent. Cycle classes in the generic fibre specialize to their prelog counterparts in the central fibre, thus extending to Chow rings the method of studying smooth varieties via strictly semistable degenerations. After proving basic properties for prelog Chow rings and groups, we explain how they can be used in an envisaged further development of the degeneration method by Voisin et al. to prove stable irrationality of very general fibres of certain families of varieties; this extension would allow for much more singular degenerations, such as toric degenerations as occur in the Gross-Siebert programme, to be usable. We illustrate that by looking at the example of degenerations of elliptic curves, which, although simple, shows that our notion of prelog decomposition of the diagonal can also be used as an obstruction in cases where all components in a degeneration and their mutual intersections are rational. We also compute the saturated prelog Chow group of degenerations of cubic surfaces.


Full work available at URL: https://arxiv.org/abs/1911.08930



No records found.


No records found.








This page was built for publication: Prelog Chow rings and degenerations

Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6133344)