Characterization of holomorphic invariant strongly pseudoconvex complex Finsler metrics on unit polydisks
From MaRDI portal
Publication:6134568
DOI10.1007/s12220-023-01397-5zbMath1526.53071MaRDI QIDQ6134568
Publication date: 22 August 2023
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Schwarz lemmaholomorphic sectional curvatureKähler-Berwald metricsholomorphic invariant Finsler metrics
Holomorphic mappings, (holomorphic) embeddings and related questions in several complex variables (32H02) Other complex differential geometry (53C56) Global differential geometry of Finsler spaces and generalizations (areal metrics) (53C60)
Cites Work
- Schwarz lemma and Hartogs phenomenon in complex Finsler manifold
- Kähler Finsler metrics are actually strongly Kähler
- The Ahlfors-Schwarz lemma in several complex variables
- Finsler metrics - a global approach. With applications to geometric function theory
- Holomorphic sectional curvature of complex Finsler manifolds
- Sur les domaines bornes homogenes de l'espace de \(n\) variables. complexes
- Complex manifolds modeled on a complex Minkowski space
- De Rham decomposition theorem for strongly convex Kähler-Berwald manifolds
- Schwarz lemma from a Kähler manifold into a complex Finsler manifold
- A Schwarz lemma for weakly Kähler-Finsler manifolds
- Characterizations of complex Finsler connections and weakly complex Berwald metrics
- Distance, holomorphic mappings and the Schwarz lemma
- A General Schwarz Lemma for Kahler Manifolds
- A Schwarz Lemma for Bounded Symmetric Domains
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Characterization of holomorphic invariant strongly pseudoconvex complex Finsler metrics on unit polydisks