Classical observables from partial wave amplitudes
From MaRDI portal
Publication:6134677
DOI10.1007/JHEP06(2023)096arXiv2303.07638MaRDI QIDQ6134677
Author name not available (Why is that?)
Publication date: 25 July 2023
Published in: (Search for Journal in Brave)
Abstract: We study the formalism of Kosower-Maybee-O'Connell (KMOC) to extract classical impulse from quantum amplitude in the context of the partial wave expansion of a 2-to-2 elastic scattering. We take two complementary approaches to establish the connection. The first one takes advantage of Clebsch-Gordan relations for the base amplitudes of the partial wave expansion. The second one is a novel adaptation of the traditional saddle point approximation in the semi-classical limit. In the former, an interference between the S-matrix and its conjugate leads to a large degree of cancellation such that the saddle point approximation to handle a rapidly oscillating integral is no longer needed. As an example with a non-orbital angular momentum, we apply our methods to the charge-monopole scattering problem in the probe limit and reproduce both of the two angles characterizing the classical scattering. A spinor basis for the partial wave expansion, a non-relativistic avatar of the spinor-helicity variables, plays a crucial role throughout our computations.
Full work available at URL: https://arxiv.org/abs/2303.07638
No records found.
No records found.
This page was built for publication: Classical observables from partial wave amplitudes
Report a bug (only for logged in users!)Click here to report a bug for this page (MaRDI item Q6134677)