An upper bound on the mean value of the Erdős–Hooley Delta function
From MaRDI portal
Publication:6139784
DOI10.1112/plms.12572arXiv2306.08615OpenAlexW4388527470MaRDI QIDQ6139784
Dimitris Koukoulopoulos, Terence C. Tao
Publication date: 19 December 2023
Published in: Proceedings of the London Mathematical Society (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2306.08615
Asymptotic results on arithmetic functions (11N37) Distribution of integers with specified multiplicative constraints (11N25) Other results on the distribution of values or the characterization of arithmetic functions (11N64)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the number of restricted prime factors of an integer. I
- Small values of \(n^ 2\alpha\pmod 1\)
- Generalized Smirnov statistics and the distribution of prime factors
- Sur le nombre des entiers représentables comme somme de trois puissances
- Squares in sumsets
- The average orders of Hooley's Δ r ‐functions
- On the Normal Concentration of Divisors
- On the Average and Normal Orders of Hooley's Δ-Function
- On a New Technique and Its Applications to the Theory of Numbers
- The Distribution of Prime Numbers
- Equal sums in random sets and the concentration of divisors
This page was built for publication: An upper bound on the mean value of the Erdős–Hooley Delta function