The de Rham-Fargues-Fontaine cohomology
From MaRDI portal
Publication:6142639
DOI10.2140/ant.2023.17.2097arXiv2105.13028OpenAlexW4226030406MaRDI QIDQ6142639
Alberto Vezzani, Arthur-César Le Bras
Publication date: 4 January 2024
Published in: Algebra \& Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2105.13028
de Rham cohomologymotives\(p\)-adic Hodge theoryperfectoid spacesFargues-Fontaine curverigid analytic varieties
(p)-adic cohomology, crystalline cohomology (14F30) Motivic cohomology; motivic homotopy theory (14F42) Perfectoid spaces and mixed characteristic (14G45)
Cites Work
- Unnamed Item
- \(K\)-theory and the bridge from motives to noncommutative motives
- Relative categories: another model for the homotopy theory of homotopy theories
- Projective topological spaces
- Pairings of categories and spectra
- Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic. -- Erratum
- Foundations of rigid geometry. I
- Integral \(p\)-adic Hodge theory
- Homotopy fiber products of homotopy theories
- de Rham cohomology of rigid spaces
- Spanier-Whitehead duality in algebraic geometry
- Rigid cohomology via the tilting equivalence
- Finiteness of de Rham cohomology in rigid analysis.
- Perfectoid spaces
- New Weil cohomologies in positive characteristic
- Frobenius modules and de Jong's theorem
- Moduli of \(p\)-divisible groups
- Formal cohomology. I
- Seminar of algebraic geometry du Bois-Marie 1963--1964. Topos theory and étale cohomology of schemes (SGA 4). Vol. 1: Topos theory. Exp. I--IV
- Éléments de géométrie algébrique. III: Étude cohomologique des faisceaux cohérents. (Séconde partie). Rédigé avec la colloboration de J. Dieudonné
- The Monsky–Washnitzer and the overconvergent realizations
- Rigid analytic spaces with overconvergent structure sheaf
- The Relative (de-)Perfectoidification Functor and Motivic p-Adic Cohomologies
- The six-functor formalism for rigid analytic motives
- Perfection in motivic homotopy theory
- p-ADIC GEOMETRY
- LA COURBE
- Berkeley Lectures on p-adic Geometry
- A motivic version of the theorem of Fontaine and Wintenberger
- Perfectoid Spaces
- Motifs des variétés analytiques rigides
- Relative p-adic Hodge theory: Foundations
- La réalisation étale et les opérations de Grothendieck
- Higher Topos Theory (AM-170)
- On the De Rham cohomology of algebraic varieties
- $G$-bundles on the absolute Fargues–Fontaine curve