Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras
From MaRDI portal
Publication:6147117
DOI10.1016/j.aim.2023.109383arXiv2204.04123OpenAlexW4388643869MaRDI QIDQ6147117
Tomasz Przeździecki, Andrea Appel
Publication date: 1 February 2024
Published in: Advances in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2204.04123
quantum affine algebrasSchur-Weyl dualityKhovanov-Lauda-Rouquier algebrasquantum affine symmetric pairs
Quantum groups (quantized enveloping algebras) and related deformations (17B37) Quantum groups and related algebraic methods applied to problems in quantum theory (81R50) Yang-Baxter equations (16T25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quantum symmetric Kac-Moody pairs
- Representations of Khovanov-Lauda-Rouquier algebras and combinatorics of Lyndon words.
- Canonical bases and affine Hecke algebras of type \(B\).
- Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras. IV
- Symmetric crystals and affine Hecke algebras of type \(B\).
- Cluster algebras and quantum affine algebras
- An exotic Deligne-Langlands correspondence for symplectic groups.
- Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras.
- A q-difference analogue of \(U({\mathfrak g})\) and the Yang-Baxter equation
- On automorphisms of Kac-Moody algebras and groups
- Quantum Knizhnik-Zamolodchikov equations and affine root systems
- Nazarov-Wenzl algebras, coideal subalgebras and categorified skew Howe duality
- Canonical bases arising from quantum symmetric pairs
- Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras
- Universal K-matrix for quantum symmetric pairs
- Representations of quantum affine algebras
- Quantum Grothendieck rings and derived Hall algebras
- Higher level affine Schur and Hecke algebras
- Equivalence between module categories over quiver Hecke algebras and Hernandez-Leclerc's categories in general types
- Quantum Schur duality of affine type C with three parameters
- Coxeter categories and quantum groups
- Symmetric quiver Hecke algebras and \(R\)-matrices of quantum affine algebras. II
- Quantum affine algebras and affine Hecke algebras
- Symmetric crystals for \(\mathfrak{gl}_{\infty}\)
- Quiver varieties and \(t\)-analogs of \(q\)-characters of quantum affine algebras
- Symmetric quiver Hecke algebras andR-matrices of quantum affine algebras III: Table 1.
- Monoidal categorification of cluster algebras
- A diagrammatic approach to categorification of quantum groups I
- THE AUGMENTED TRIDIAGONAL ALGEBRA
- Multiparameter quantum Schur duality of type B
- Quiver varieties and symmetric pairs
- Boundary conditions for integrable quantum systems
- Affine Hecke algebras and generalizations of quiver Hecke algebras of type B
- A new approach to Kazhdan-Lusztig theory of type B via quantum symmetric pairs
- Morita equivalences for cyclotomic Hecke algebras of type B and D
- Pseudo-symmetric pairs for Kac-Moody algebras
- Affine highest weight categories and quantum affine Schur-Weyl duality of Dynkin quiver types
- Universal K-matrices for quantum Kac-Moody algebras
- Quasitriangular coideal subalgebras of Uq(g) in terms of generalized Satake diagrams
- Twisted Yangians, twisted quantum loop algebras and affine Hecke algebras of type $BC$
- Crystal Basis Theory for a Quantum Symmetric Pair $(\mathbf{U},\mathbf{U}^{\jmath })$
- Geometric Realization of Dynkin Quiver Type Quantum Affine Schur–Weyl Duality
- Introduction to quantum groups
- Actions of tensor categories, cylinder braids and their Kauffman polynomial
- Representations of orientifold Khovanov-Lauda-Rouquier algebras and the Enomoto-Kashiwara algebra
This page was built for publication: Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras