Explicit zero-free regions for the Riemann zeta-function
From MaRDI portal
Publication:6148977
DOI10.1007/s40993-023-00498-yarXiv2212.06867OpenAlexW4390813842WikidataQ130185987 ScholiaQ130185987MaRDI QIDQ6148977
Timothy S. Trudgian, Michael J. Mossinghoff, Andrew Yang
Publication date: 8 February 2024
Published in: Research in Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2212.06867
Nonreal zeros of (zeta (s)) and (L(s, chi)); Riemann and other hypotheses (11M26) Trigonometric polynomials, inequalities, extremal problems (42A05) Analytic computations (11Y35)
Related Items (2)
Explicit bounds for the Riemann zeta function and a new zero-free region ⋮ Explicit bounds on \(\zeta (s)\) in the critical strip and a zero-free region
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An explicit van der Corput estimate for \(\zeta(1/2+it)\)
- An improved explicit bound on \(| \zeta(\frac{1}{2} + i t) |\)
- Explicit bounds for primes in arithmetic progressions
- An explicit result for primes between cubes
- Explicit estimates for the Riemann zeta function
- Nonnegative trigonometric polynomials and a zero-free region for the Riemann zeta-function
- Zur Abschätzung der Riemannschen Zetafunktion in der Nähe der Vertikalen \(\sigma = 1\)
- Counting zeros of the Riemann zeta function
- A NOTE ON KADIRI'S EXPLICIT ZERO FREE REGION FOR RIEMANN ZETA FUNCTION
- On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions
- On the remainder term of the prime number formula II; On a theorem of Ingham
- Zero-free regions for the Riemann zeta function
- Zero-Free Regions for Dirichlet L-Functions, and the Least Prime in an Arithmetic Progression
- Convexité, complète monotonie et inégalités sur les fonctions zèta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques
- VINOGRADOV'S INTEGRAL AND BOUNDS FOR THE RIEMANN ZETA FUNCTION
- Sharper bounds for the Chebyshev function 𝜃(𝑥)
- The Riemann hypothesis is true up to 3·1012
- Explicit interval estimates for prime numbers
- The error term in the prime number theorem
- Computing $\pi (x)$ analytically
- Une région explicite sans zéros pour la fonction ζ de Riemann
- Explicit Bounds for Some Functions of Prime Numbers
- Primes between consecutive powers
- Sharper bounds for the error term in the prime number theorem
This page was built for publication: Explicit zero-free regions for the Riemann zeta-function