scientific article; zbMATH DE number 7820358
From MaRDI portal
Publication:6153956
arXiv2201.05361MaRDI QIDQ6153956
Publication date: 19 March 2024
Full work available at URL: https://arxiv.org/abs/2201.05361
Title: zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Eilenberg-Moore and Kleisli constructions for monads (18C20) Hopf algebras and their applications (16T05) Braided monoidal categories and ribbon categories (18M15) String diagrams and graphical calculi (18M30)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Categorified trace for module tensor categories over braided tensor categories
- Skew-monoidal categories and bialgebroids.
- Hopf monads on monoidal categories
- Monoidal 2-structure of bimodule categories
- A necessary and sufficient condition for a finite-dimensional Drinfel'd double to be a ribbon Hopf algebra
- Tortile Yang-Baxter operators in tensor categories
- Centers of graded fusion categories
- The geometry of tensor calculus. I
- Spherical categories
- Cyclic cohomology and Hopf algebras
- Braided tensor categories
- Cyclic cohomology and Hopf algebra symmetry
- Stable anti-Yetter-Drinfeld modules.
- Monoidal categories in, and linking, geometry and algebra
- The pivotal cover and Frobenius-Schur indicators
- Non-degeneracy conditions for braided finite tensor categories
- Trusses: paragons, ideals and modules
- Monoidal categories and topological field theory
- Hopf monads
- The monoidal center and the character algebra
- A trace for bimodule categories
- The formal theory of monads
- Generalized Hopf Modules for bimonads
- Quantum double of Hopf monads and categorical centers
- Physics, Topology, Logic and Computation: A Rosetta Stone
- A Survey of Graphical Languages for Monoidal Categories
- Bimonads and Hopf monads on categories
- Monoidal Functors, Species and Hopf Algebras
- A Hopf algebra without a modular pair in involution
- (Co)end Calculus
- Wagner’s Theory of Generalised Heaps
- Heap and ternary self-distributive cohomology
- Dualizable tensor categories
- Basic Category Theory
- From Hopf Algebras to Tensor Categories
- Tensor Categories
- Monoidal Categories, 2-Traces, and Cyclic Cohomology
- The ternary operation (𝑎𝑏𝑐)=𝑎𝑏⁻¹𝑐 of a group
- Non-semisimple topological quantum field theories for 3-manifolds with corners
- Turning monoidal categories into strict ones
- Monads on tensor categories
This page was built for publication: