Prime divisors of \(\ell\)-Genocchi numbers and the ubiquity of Ramanujan-style congruences of level \(\ell\)
From MaRDI portal
Publication:6156550
DOI10.1016/j.jnt.2023.04.003zbMath1516.11008arXiv2209.08047OpenAlexW4378212710MaRDI QIDQ6156550
Publication date: 13 June 2023
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2209.08047
Ramanujan-type congruencesArtin's primitive root conjecture\( \ell \)-Genocchi numbers\( \ell \)-regularity
Bernoulli and Euler numbers and polynomials (11B68) Congruences for modular and (p)-adic modular forms (11F33) Congruences; primitive roots; residue systems (11A07)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the counting function of irregular primes
- The \((S, \{2 \})\)-Iwasawa theory
- Salajan's conjecture on discriminating terms in an exponential sequence
- On primes in arithmetic progression having a prescribed primitive root. II
- A conjecture of Krishnamurthy on decimal periods and some allied problems
- Interpretations combinatoires des nombres de Genocchi
- On Artin's conjecture and Euclid's algorithm in global fields
- On primes in arithmetic progression having a prescribed primitive root
- Near-primitive roots
- Fekete polynomials, quadratic residues, and arithmetic
- Ramanujan-style congruences for prime level
- Irregular primes with respect to Genocchi numbers and Artin's primitive root conjecture
- Über die Dichte der Primzahlen \(p\), für die eine vorgegebene ganzrationale Zahl \(a\neq 0\) von gerader bzw. ungerader Ordnung \(\mod p\) ist
- A Survey of Alternating Permutations
- PRIMES IN A PRESCRIBED ARITHMETIC PROGRESSION DIVIDING THE SEQUENCE $\{a^k+b^k\}_{k=1}^{\infty}$
- The First Case of Fermat's Last Theorem is True for all Prime Exponents up to 714,591,416,091,389
- Cyclic Subgroups of the Prime Residue Group
- Abelian binomials, power residues and exponential congruences
- On the divisors of $a^k + b^k$
- Artin's Primitive Root Conjecture – A Survey
- Bernoulli Numbers and Zeta Functions
- Computation of Tangent, Euler, and Bernoulli Numbers
- On Artin's conjecture.
- Browkin’s discriminator conjecture
This page was built for publication: Prime divisors of \(\ell\)-Genocchi numbers and the ubiquity of Ramanujan-style congruences of level \(\ell\)