Zigzag polynomials, Artin's conjecture and trinomials
From MaRDI portal
Publication:6156908
DOI10.1016/j.ffa.2023.102198zbMath1520.11098arXiv2006.15683OpenAlexW4365506037MaRDI QIDQ6156908
David L. Wehlau, H. E. A. Campbell
Publication date: 19 June 2023
Published in: Finite Fields and their Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2006.15683
Permutations, words, matrices (05A05) Recurrences (11B37) Polynomials over finite fields (11T06) Finite fields (field-theoretic aspects) (12E20) Congruences; primitive roots; residue systems (11A07) Fibonacci and Lucas numbers and polynomials and generalizations (11B39)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On \(x^{q+1}+ax+b\)
- Factorization of a class of polynomials over finite fields
- A remark on Artin's conjecture
- Artin's conjecture for primitive roots
- Factorization over a finite field \(\mathbb F_{p^n}\) of the composite polynomials \(f\left(X^{p^r}-aX\right)\) where \(f(X)\) is an irreducible polynomial in \(\mathbb F_{p^n}(X)\)
- The Magma algebra system. I: The user language
- Representations of elementary abelian \(p\)-groups and finite subgroups of fields
- Rings of invariants for modular representations of elementary abelian \(p\)-groups
- Solving \(x^{2^k + 1} + x + a = 0\) in \(\mathbb{F}_{2^n}\) with \(\gcd(n, k) = 1\)
- A Survey of Alternating Permutations
- Divisibility properties of the Fibonacci entry point
- Sur l'irréductibilité des trinômes $X^{p^r + 1} - aX - b$ sur les corps finis $F_{p^s}$
- Fibonacci Series Modulo m
- ARTIN'S CONJECTURE FOR PRIMITIVE ROOTS
- Sur une classe de polynômes hyponormaux sur un corps fini
- Fibonacci and Lucas Numbers With Applications
- A note on the roots of trinomials over a finite field