Explicit families of \(K3\) surfaces having real multiplication
DOI10.1307/mmj/20205878zbMath1522.14051arXiv2002.00233WikidataQ114057138 ScholiaQ114057138MaRDI QIDQ6158007
Jörg Jahnel, Andreas-Stephan Elsenhans
Publication date: 22 June 2023
Published in: Michigan Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2002.00233
(K3) surfaces and Enriques surfaces (14J28) Polynomials over finite fields (11T06) Étale and other Grothendieck topologies and (co)homologies (14F20) Classical real and complex (co)homology in algebraic geometry (14F25) Families, moduli, classification: algebraic theory (14J10) Arithmetic ground fields for surfaces or higher-dimensional varieties (14J20)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The Tate conjecture for \(K3\) surfaces over finite fields
- The Tate conjecture for \(K3\) surfaces in odd characteristic
- The Mumford-Tate conjecture for the product of an abelian surface and a \(K3\) surface
- On the Tate and Mumford-Tate conjectures in codimension 1 for varieties with \(h^{2,0}=1\)
- Some rationality questions on algebraic groups
- \(K3\) surfaces with Picard number one and infinitely many rational points
- On a conjecture of Artin and Tate
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- On the equation \(\zeta_K(s)=\zeta_{K'}(s)\)
- For an unconditional theory of motives
- The Magma algebra system. I: The user language
- La conjecture de Weil. I
- On the Picard number of \(K3\) surfaces over number fields
- Resolution of singularities of an algebraic variety over a field of characteristic zero. II
- Real multiplication on \(K3\) surfaces and Kuga-Satake varieties
- Théorie de Hodge. II. (Hodge theory. II)
- La conjecture de Weil pour les surfaces K3
- On algebraic group varieties
- Examples of surfaces with real multiplication
- Point counting on K3 surfaces and an application concerning real and complex multiplication
- 2-ADIC INTEGRAL CANONICAL MODELS
- Lectures on K3 Surfaces
- Surfaces of type K3 over number fields and the Mumford-Tate conjecture. II
- Hodge groups of K3 surfaces.
- Finiteness of K3 surfaces and the Tate conjecture
- Number of Points of Varieties in Finite Fields
This page was built for publication: Explicit families of \(K3\) surfaces having real multiplication