Power-associative algebras that are train algebras
From MaRDI portal
Publication:615812
DOI10.1016/j.jalgebra.2010.06.012zbMath1230.17027OpenAlexW2103730278MaRDI QIDQ615812
Moussa Ouattara, Fouad Zitan, Joseph Bayara, André Conseibo
Publication date: 7 January 2011
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jalgebra.2010.06.012
Jordan algebrapower-associative algebraPeirce decompositiontrain algebraBernstein algebraabsolutely primitive idempotentprincipal idempotentstable algebra
Related Items (7)
Irreducible Representations of Power-associative Train Algebras ⋮ Equations of Lie triple algebras that are train algebras ⋮ STRUCTURE OF BARIC ALGEBRAS SATISFYING A POLYNOMIAL IDENTITY OF DEGREE SIX ⋮ The universality of one half in commutative nonassociative algebras with identities ⋮ ON SOME JORDAN BARIC ALGEBRAS ⋮ Representations of power-associative train algebras of rank 4 ⋮ Bernstein algebras that are algebraic and the Kurosh problem
Cites Work
- Sur les algèbres de Bernstein qui sont des T-algèbres. (On Bernstein algebras which are T-algebras)
- Sur les algèbres de Bernstein. IV. (On Bernstein algebras. IV)
- Indecomposable baric algebras. II
- Structure of Bernstein algebras
- Bernstein algebras which are Jordan algebras
- Gametization of weighted algebras
- On a class of power-associative algebras
- On a class of baric algebras
- Indecomposable baric algebras
- On solvability of Jordan nil-algebras
- Sur les T-algèbres de Jordan. (On Jordan T-algebras)
- On Bernstein algebras which are train algebras
- Embedding nil algebras in train algebras
- The peirce decomposition for commutative train algebras
- Algebraic structure of genetic inheritance
- On train algebras of rank 4
- Baric, bernstein and jordan algebras
- Principal and plenary train algebras
- Train Algèbres Alternatives: Relation Entre Nilindice et Degré
- Commutative Algebras Satisfying an Identity of Degree Four
- Jordan algebras arising in population genetics
- Structure of Genetic Algebras
- A Theory of Power-Associative Commutative Algebras
- Commutative Train Algebras* of Ranks 2 and 3
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Power-associative algebras that are train algebras