Exceptional cases of Terai's conjecture on Diophantine equations
From MaRDI portal
Publication:616143
DOI10.1007/s00013-010-0201-6zbMath1210.11047OpenAlexW1986874713WikidataQ123193636 ScholiaQ123193636MaRDI QIDQ616143
Publication date: 7 January 2011
Published in: Archiv der Mathematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00013-010-0201-6
Related Items (8)
Unnamed Item ⋮ On the exponential Diophantine equation \((m^2+m+1)^x+m^y=(m+1)^z\) ⋮ On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$ ⋮ On the exponential Diophantine equation (18m2 + 1)x + (7m2 -1)y = (5m)z ⋮ On the Diophantine equation (( c + 1) m 2 + 1) x + ( cm 2 ⋮ On the Diophantine equation $(5pn^{2}-1)^{x}+(p(p-5)n^{2}+1)^{y}=(pn)^{z}$ ⋮ ON THE EXPONENTIAL DIOPHANTINE EQUATION ⋮ On the system of Diophantine equations \((m^2 - 1)^r + b^2 = c^2\) and \((m^2 - 1)^x + b^y = c^z\)
Cites Work
- Unnamed Item
- On the equations \(p^x - b^y = c\) and \(a^x + b^y = c^z\)
- Sur une classe d'équations exponentielles
- On \(p^x-q^y=c\) and related three term exponential Diophantine equations with prime bases.
- Zur Approximation algebraischer Zahlen. I: Über den grössten Primteiler binärer Formen
- The Diophantine equation \(Ax^ p+By^ q=Cz^ r\).
- An application of a lower bound for linear forms in two logarithms to the Terai–Jeśmanowicz conjecture
- A conjecture concerning the exponential diophantine equation ax+by=cz
- Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations
- A note on the Diophantine equation $a^x + b^y = c^z$
- A complete solution to X2 + Y3 + Z5 = 0
- On the Equations zm = F (x, y ) and Axp + Byq = Czr
- TERAI'S CONJECTURE ON EXPONENTIAL DIOPHANTINE EQUATIONS
- Number Theory
This page was built for publication: Exceptional cases of Terai's conjecture on Diophantine equations