ZERO-CYCLES ON NORMAL PROJECTIVE VARIETIES
From MaRDI portal
Publication:6171807
DOI10.1017/s1474748022000032zbMath1527.14013arXiv2012.11249OpenAlexW4211251887MaRDI QIDQ6171807
Unnamed Author, Amalendu Krishna
Publication date: 16 August 2023
Published in: Journal of the Institute of Mathematics of Jussieu (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2012.11249
Algebraic cycles (14C25) Motivic cohomology; motivic homotopy theory (14F42) Algebraic cycles and motivic cohomology ((K)-theoretic aspects) (19E15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Chow group of 0-cycles with modulus and higher-dimensional class field theory
- Rojtman's theorem for normal schemes
- A finiteness theorem for zero-cycles over \(p\)-adic fields
- Unramified class field theory over function fields in several variables
- On 0-cycles with modulus
- Singular homology of arithmetic schemes
- Bloch's formula for singular surfaces
- Continuous étale cohomology
- K\(_2\) and algebraic cycles
- Cohomologie étale. Seminaire de géométrie algébrique du Bois-Marie SGA 4 1/2 par P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier
- Desingularization of two-dimensional schemes
- Grothendieck duality and \(\mathbb{Q}\)-Gorenstein morphisms
- Tame class field theory for singular varieties over finite fields
- Riemann-Roch for homotopy invariant \(K\)-theory and Gysin morphisms
- A module structure and a vanishing theorem for cycles with modulus
- Bivariant theories in motivic stable homotopy
- Exponential sums, the geometry of hyperplane sections, and some diophantine problems
- The torsion of the group of 0-cycles modulo rational equivalence
- Zero-cycles and \(K\)-theory on normal surfaces.
- On the Albanese map for smooth quasi-projective varieties
- Singular homology of abstract algebraic varieties
- Zero-cycle groups on algebraic varieties
- Reciprocity for Kato-Saito idele class group with modulus
- Unramified class field theory of arithmetical surfaces
- Murthy's conjecture on 0-cycles
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Théorie de Hodge. III
- Bertini theorems over finite fields
- Éléments de géométrie algébrique. I: Le langage des schémas. II: Étude globale élémentaire de quelques classe de morphismes. III: Étude cohomologique des faisceaux cohérents (première partie)
- Sur les critères d'équivalence en géométrie algébrique
- Generalized jacobian varieties
- Milnor 𝐾-theory of local rings with finite residue fields
- An Artin-Rees theorem in 𝐾-theory and applications to zero cycles
- Complexe de de\thinspace Rham-Witt et cohomologie cristalline
- Higher algebraic K-theory: I
- Bertini theorems for hypersurface sections containing a subscheme
- Cycles, Transfers, and Motivic Homology Theories. (AM-143)
- Singular homology and class field theory of varieties over finite fields
- Zero cycles with modulus and zero cycles on singular varieties
- Weight Homology of Motives
- Cube invariance of higher Chow groups with modulus
- Duality for relative logarithmic de Rham–Witt sheaves and wildly ramified class field theory over finite fields
- 𝐾-theory and 0-cycles on schemes
- Galois Groups and Fundamental Groups
- RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS
- Zero cycles on a threefold with isolated singularities
- Problèmes arithmétique et géométriques rattachés à la notion de rang d'une courbe algébrique dans un corps
- Bloch’s formula for 0-cycles with modulus and higher-dimensional class field theory
- Duality of Albanese and Picard 1-motives
This page was built for publication: ZERO-CYCLES ON NORMAL PROJECTIVE VARIETIES