Euler characteristic and cohomology of \(\mathrm{Sp}_4 (\mathbb{Z})\) with nontrivial coefficients
DOI10.1007/s40879-023-00630-3arXiv1905.01547MaRDI QIDQ6174106
Matías Victor Moya Giusti, Ivan Emilov Horozov, Jitendra Bajpai
Publication date: 13 July 2023
Published in: European Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1905.01547
symplectic groupEuler characteristicgroup cohomologyBorel-Serre compactificationcuspidal and Eisenstein cohomology
Relationship to Lie algebras and finite simple groups (11F22) Structure of modular groups and generalizations; arithmetic groups (11F06) Representation-theoretic methods; automorphic representations over local and global fields (11F70) Cohomology of arithmetic groups (11F75)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- An explicit dimension formula for the spaces of generalized automorphic forms with respect to \(\mathrm{Sp}(2, \mathbb Z)\)
- Eisenstein series and cohomology of arithmetic groups: The generic case
- On the Euler characteristic of the discrete spectrum
- Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen
- Boundary and Eisenstein cohomology of \(\mathrm{SL}_3(\mathbb{Z})\)
- Cohomology of \(\mathrm{GL}_4(\mathbb{Z})\) with nontrivial coefficients
- Corners and arithmetic groups (Appendice: Arrondissement des varietes a coins par A. Douady et L. Herault)
- Cohomology of local systems on the moduli of principally polarized abelian surfaces
- Euler characteristics of arithmetic groups.
- Lie algebra cohomology and the generalized Borel-Weil theorem
- Dimensions of spaces of level one automorphic forms for split classical groups using the trace formula
- Eisenstein Cohomology for $$\mathrm{Sl}_2({\mathbb Z}[i)$$ Sl 2 ( Z [ i ] ) and Special Values of L-Functions]
- The Eisenstein motive for the cohomology of GSp<sub>2</sub>(ℤ)
- A Gauss-Bonnet formula for discrete arithmetically defined groups
This page was built for publication: Euler characteristic and cohomology of \(\mathrm{Sp}_4 (\mathbb{Z})\) with nontrivial coefficients