Bounds for ratios of the membrane eigenvalues
From MaRDI portal
Publication:618283
DOI10.1016/j.jde.2010.10.009zbMath1206.35183OpenAlexW2037703523MaRDI QIDQ618283
Publication date: 14 January 2011
Published in: Journal of Differential Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jde.2010.10.009
Boundary value problems for second-order elliptic equations (35J25) Estimates of eigenvalues in context of PDEs (35P15) Spectral problems; spectral geometry; scattering theory on manifolds (58J50)
Related Items
EIGENVALUES OF THE LAPLACIAN ON RIEMANNIAN MANIFOLDS, Universal bounds for fractional Laplacian on a bounded open domain in \({\mathbb{R}}^n \), Estimates for eigenvalues of ℒr operator on self-shrinkers, Sharp bounds for Dirichlet eigenvalue ratios of the Camassa-Holm equations, Inequalities for eigenvalues of the drifting Laplacian on Riemannian manifolds, Eigenvalues of Witten-Laplacian on the cigar metric measure spaces, Extremal problems of the density for vibrating string equations with applications to gap and ratio of eigenvalues, On the Ashbaugh-Benguria conjecture about lower-order Dirichlet eigenvalues of the Laplacian, Unnamed Item, Eigenvalues of the drifting Laplacian on smooth metric measure spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bounds on eigenvalues of Dirichlet Laplacian
- Bounds for the third membrane eigenvalue
- Isoperimetric bound for \(\lambda{}_ 3 /\lambda{}_ 2\) for the membrane problem
- A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions
- The universal eigenvalue bounds of Payne-Pólya-Weinberger, Hile-Protter, and H. C. Yang
- Bounds for the ratios of the first three membrane eigenvalues
- On the Ratio of Consecutive Eigenvalues
- More Bounds on Eigenvalue Ratios for Dirichlet Laplacians inNDimensions
- Range of the First Three Eigenvalues of the Planar Dirichlet Laplacian
- On the Ratio of Consecutive Eigenvalues in N‐Dimensions