A posteriori error estimation for a finite volume discretization on anisotropic meshes
From MaRDI portal
Publication:618570
DOI10.1007/s10915-010-9352-7zbMath1203.65157OpenAlexW2084373905MaRDI QIDQ618570
Publication date: 16 January 2011
Published in: Journal of Scientific Computing (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10915-010-9352-7
Reaction-diffusion equations (35K57) Error bounds for initial value and initial-boundary value problems involving PDEs (65M15) Finite volume methods for initial value and initial-boundary value problems involving PDEs (65M08)
Related Items (4)
Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion ⋮ Robust a posteriori error estimates for conforming discretizations of a singularly perturbed reaction-diffusion problem on anisotropic meshes ⋮ Robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients on anisotropic meshes ⋮ Guaranteed \textit{a posteriori} error estimates for a fractured porous medium
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A note on the energy norm for a singularly perturbed model problem
- Estimations a posteriori d'un schéma de volumes finis pour un problème non linéaire. (A posteriori estimates of a finite volume scheme for a nonlinear problem.)
- A posteriori estimators for the finite volume discretization of an elliptic problem
- A posteriori error estimators for stationary convection-diffusion problems: A computational comparison
- An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes
- Delaunay refinement algorithms for triangular mesh generation
- A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations
- Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in flows in porous media
- Balanced a posteriori error estimates for finite-volume type discretizations of convection-dominated elliptic problems
- A Local Problem Error Estimator for Anisotropic Tetrahedral Finite Element Meshes
- A posteriorierror estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations
- Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes
- Some Error Estimates for the Box Method
- Estimateurs a posteriori d'un schéma de volumes finis pour un problème non linéaire
- A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions
- A posteriori error estimation for convection dominated problems on anisotropic meshes
- A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convection-diffusion equations
- An anisotropic a posteriori error estimate for a convection-diffusion problem
- Robust a posteriori error estimation for a singularly perturbed reaction--diffusion equation on anisotropic tetrahedral meshes
This page was built for publication: A posteriori error estimation for a finite volume discretization on anisotropic meshes