Compact Bergman type operators
From MaRDI portal
Publication:6186078
DOI10.1007/S11785-023-01419-8OpenAlexW4389086655MaRDI QIDQ6186078
Publication date: 9 January 2024
Published in: Complex Analysis and Operator Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11785-023-01419-8
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Linear operators defined by compactness properties (47B07) Linear operators belonging to operator ideals (nuclear, (p)-summing, in the Schatten-von Neumann classes, etc.) (47B10) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25)
Cites Work
- Dixmier trace for Toeplitz operators on symmetric domains
- \(L^p\)-\(L^q\) estimates for Bergman projections in bounded symmetric domains of tube type
- Interpolation of compactness using Aronszajn-Gagliardo functors
- Characterization of the unit ball in \(\mathbb{C}^n\) by its automorphism group
- Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains
- The singular integral operator induced by Drury-Arveson kernel
- Schatten class Bergman-type and Szegö-type operators on bounded symmetric domains
- The \(L^p\)-\(L^q\) boundedness and compactness of Bergman type operators
- Singular integral operators with Bergman-Besov kernels on the ball
- Toeplitz operators on Arveson and Dirichlet spaces
- A remark on Schatten class Toeplitz operators on Bergman spaces
- Spaces of Holomorphic Functions in the Unit Ball
- Estimates for the Bergman and Szegö projections in two symmetric domains of $ℂ^{n}$
- The hyper-singular cousin of the Bergman projection
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Compact Bergman type operators